www.bergab.ru

Берг АБ

bergab@ya.ru

тел. (495) 228-06-21,

факс (495) 223-30-71

GMN

High speed spindles for manual tool change

GMN Paul Müller Industrie GmbH & Co. KG Äußere Bayreuther Str. 230 · D-90411 Nuremberg Phone: +49 (o) 911-5691-0 · Fax: +49 (o) 911-5691-221 www.gmn.de

Spindle technology:

Phone: +49 (o) 911-56 91-240 · Fax: +49 (o) 911-5691-699 Mail: vertrieb.spi@gmn.de

Official GMN representative:

2508 0914 ENG 2508 0914 ENG

Contents:

GMN spindle technology

Years of experience ensure highest levels of precision

GMN motor spindles

- · High speed spindles

- · High performance spindles

Design features

Spindle bearing

Lubrication

Cooling

Motors

Drive systems

Coolant supply through the spindle shaft

Maximum speeds

Tool interfaces

Legend and features

Technical data Features

GMN

High speed spindles for manual tool change

· Tool interface: **GMN** standard

- · Tool interface: **HSK** interface

Dressing spindles

GMN grinding quills

for GMN standard

- · Grinding quills
- · Semifinished products
- · Shrink fit chucks

for HSK interface

- · Grinding quills
- · Semifinished products
- · Shrink fit chucks

Accessories

Cables

Plugs

Lubrication units

Cooling units

Service

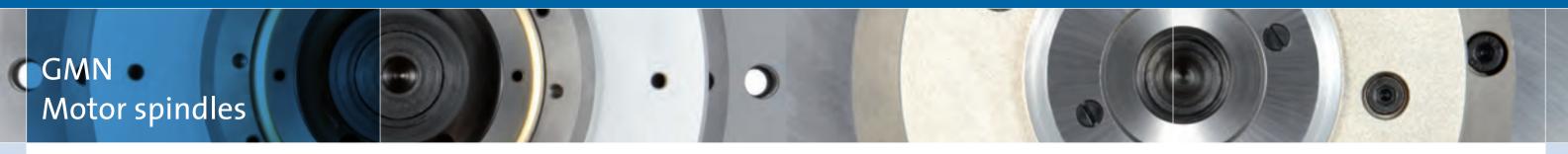
Internet

Quality management

<u>www.bergab.ru</u> Берг АБ bergab@ya.ru тел. (495) 228-06-21, факс (495) 223-30-71

GMN spindle technology

High speed spindles for manual tool change


GMN

Based on its many years of experience in the development and production of high-quality machine components, GMN has chosen to specialize, within the field of spindle technology, in the production of long-life, high performance, high-speed spindles.

Emphasis is placed on the highest precision in the development and production of GMN high frequency spindles. This ensures their certification to international standards and produces consistent, outstanding quality characteristics with respect to stability and long service life in combination with high speed suitability.

The standardized model series offer a large selection of feature options to furnish effective spindle solutions for almost any field of application.

A myriad of special designs which have been successfully created by GMN confirm that optimal performance can be realized even for unusual structural specifications. <u>www.bergab.ru</u> Берг АБ bergab@ya.ru тел. (495) 228-06-21, факс (495) 223-30-71

High speed spindles for manual tool change

GMN

Series: UHS, HS, HV-X, HSX, HV-P, HSP, HSP..g

Housing Ø

·80-230 mm

Speed

· max. 250,000 rpm

Power

· S1 max. 45 kW

Torque

· S1 max. 85 Nm

Motor

- · Asynchronous motor
- · Synchronous motor

Tool interface

- · GMN standard
- Internal taper with flat contact face
- Fitting bores with flat contact face
- · HSK-C

Tool change

· Manual

Lubrication

- · Oil-air lubrication
- · Permanent grease lubrication

Pages 22-69

High speed spindles for automatic tool change
Series: HC, HCS

Housing Ø

· 80-380 mm

Speed

· max. 90,000 rpm

Power

· S1 max. 120 kW

Torque

· S1 max. 450 Nm

Motor

- · Asynchronous motor
- · Synchronous motor

Tool interface

- · HSK-A / B / E / T / F
- · SK / BT
- · PSC (Capto)

Tool change

· Automatic

Lubrication

- · Oil-air lubrication
- · Permanent grease lubrication

Catalog 2505

Special solutions on request

High performance spindles Tool spindles

Series: TSE, TSEV

$\operatorname{Housing} \emptyset$

· According to customer specification

Power

· S1 max. 350 kW

Torque

· S1 max. 1,750 Nm

Motor

- · Asynchronous motor
- · Synchronous motor

Tool interface

- · Standardized tool interfaces
- · According to customer specification

Tool change

- Manual
- · Automatic

Lubrication

- · Oil-air lubrication
- · Permanent grease lubrication

Feature options

- · Automatic balancing systems
- · A/E sensor
- · Shaft clamping for lathe work
- · Vibration sensor
- · Shaft growth sensor

Application examples

- · Dressing spindles
- · External-rotor motor grinding spindles
- · Grinding spindles

GMN spindles in this series are fabricated on request to customer specifications

High performance spindles Special design

Series: ASE, HPD, WSE, ...

www.gmn.de

Housing Ø

· According to customer specification

Power

· S1 max. 350 kW

Torque

· S1 max. 1,750 Nm

Motor

- · Asynchronous motor
- · Synchronous motor

Tool interface

- · Standardized tool interfaces
- $\cdot \, According \, to \, customer \, specification \,$

Tool change

- \cdot Manual
- Automatic

Lubrication

- · Oil-air lubrication
- · Permanent grease lubrication

Application examples

- $\cdot \, Work piece \, spindles \,$
- · Test stand motor
- · High speed pump motor (helium, hydrogen)
- · Energy-recovery generators
- · Centrifuges

GMN spindles in this series are fabricated on request to customer specifications

www.bergab.ru Берг АБ bergab@ya.ru тел. (495) 228-06-21, факс (495) 223-30-71

GMN high precision ball bearings

GMN

Use of the highest quality components is the basis for the outstanding performance and long service life exhibited by GMN products.

Almost all spindles are equipped with GMN high precision ball bearings. These ensure reliable operation, smooth running and long service life.

Spindle technology from GMN is the result of the highest demands on quality – from development to production.

Minimal tolerances for dimension, shape and running accuracy produce maximum performance capability, long service life and are defined by international (ISO 492) and national (DIN 620) standards.

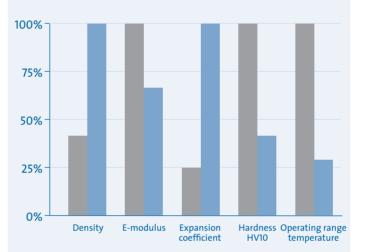
GMN high precision ball bearings are produced in precision classes P4–P2 as well as ABEC 7–ABEC 9.

GMN precision classes HG (high accurate) and UP (ultra precision) attain still greater levels of accuracy with even lower dimensional tolerances.

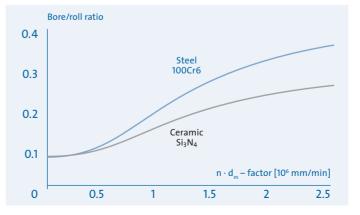
GMN hybrid ball bearings

Hybrid ball bearings are characterized by a combination of materials; bearing steel (inner and outer rings) and ceramic (balls).

The material-based characteristics of ceramic balls (in comparison to bearings with steel balls) offer clear performance improvements in machine operation, especially under critical conditions.


Materia

Ceramic: Silicon nitride Si₃N₄


Material characteristics

- · Low affinity to 100Cr6
- · Low friction coefficient
- · Low heat conductivity
- · Corrosion resistance
- · Non magnetic
- · Electrically insulating

Characteristics of ceramics (silicon nitride) Si₃N₄ and bearing steel (chrome steel) 100Cr6

Advantages

Longer service life

Because of their material characteristics, hybrid bearings attain more than twice the service life of steel bearings. Machine operation time is significantly increased.

Higher speeds

Due to their tribological characteristics and lower mass forces, speed increases – in comparison to bearings with steel balls – of up to 30% can be attained.

Low-cost lubrication

The maximum speed for grease and oil lubrication is increased. Therefore grease lubrication can frequently be used instead of cost-intensive oil lubrication.

Higher rigidity

The characteristics of the materials improve both, radial and axial rigidity. The advantages are increased accuracy and a higher frequency for critical resonance.

Improved processing accuracy

Higher bearing rigidity, reduced thermal expansion and lower vibration excitation make it possible to achieve maximum processing accuracy.

<u>www.bergab.ru</u> Берг АБ bergab@ya.ru тел. (495) 228-06-21, факс (495) 223-30-71

Permanent grease lubrication with air purge

GMN grease-lubricated spindle bearings ensure reliable, maintenance free operation over the bearing's entire service lifetime.

The high-performance greases selected by GMN to lubricate bearings are optimized in quantity and quality for the service lifetimes of the installed GMN ball bearings.

A re-lubrication of the spindle bearing is not necessary.

Compressed air supply for air purge GMN high precision ball bearings with permanent grease lubrication

Permanent grease lubrication is characterized by low technical overhead and low life-cycle costs:

- · Maintenance free
- · Simplified system design
- · Reduced operating costs (no oil consumption)
- · No oil residues

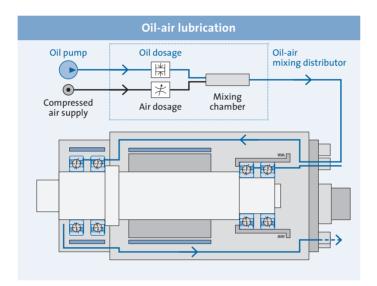
GMN

· Environmentally friendly

Air purge (standard)

GMN standard series spindles with permanent grease lubrication are equipped with an air purge.

· Protection against spindle contamination


Air purge

A continuous supply of compressed air through the ring gap between shaft and housing seals the working side of the spindle against contamination by abrasive particles and liquids – and also ensures long service life even under harsh operating conditions.

Oil-air lubrication

Oil-air lubrication provides a specific supply of lubricant to the spindle bearing and is particularly well suited for very high speeds.

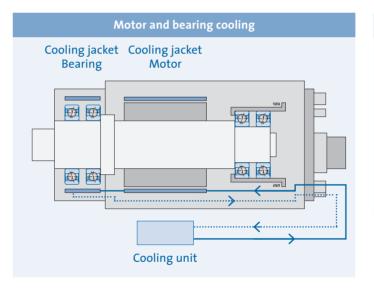
The lubricant is introduced at intervals and evenly dispersed to the lubrication points by a continuous stream of air.

Oil-air lubrication guarantees utmost effectiveness with respect to consumption and lubricating effect at maximum speeds:

- · Minimum friction losses
- · Low heat development
- · High operating security
- · Quantity-regulated supply of lubricant
- · Low oil consumption
- · Low oil fog formation
- Low material and maintenance overhead (oil cooling and oil filtering not necessary)

Air purge (optional)

GMN spindles with oil-air lubrication are available with an optional air purge.

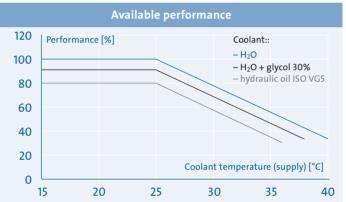

- · Protection against spindle contamination
- · Minimized oil escape

GMN lubrication units for simultaneous or separate regulation of the oil supply to as many as 4 spindles (page 80).

Motor and bearing cooling

GMN high-speed spindles are equipped with an effective liquid cooling system.

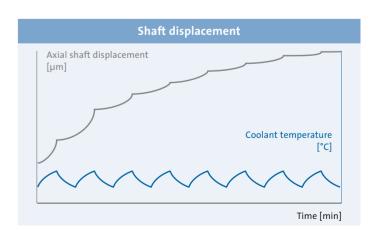
Cooling jackets in the vicinity of shaft bearings and on the spindle motor minimize increases in operating temperature, especially those increases caused by bearing friction and motor energy losses.



The reduction of operationally-induced heat development increases available spindle output performance, ensures maximum productivity and high processing quality.

Coolant temperature

The spindle's maximum output performance is reached within a specified coolant temperature range of 20 °C to 25 °C.


The actual performance attainable depends on the coolant's temperature and the medium used.

High processing accuracy

Keeping coolant temperature differences small reduces axial shaft displacement and improves processing accuracy.

GMN cooling units with high regulation accuracy are available as accessories (page 82).

www.bergab.ru Берг АБ bergab@ya.ru тел. (495) 228-06-21, факс (495) 223-30-71

Requirements

GMN

Motor spindles with improved performance, rigidity and reliability are the essential prerequisites for economical milling production in many fields of application.

Depending on the processing task, it is important that a broad spectrum of different tools can be employed to the full extent of their performance capabilities:

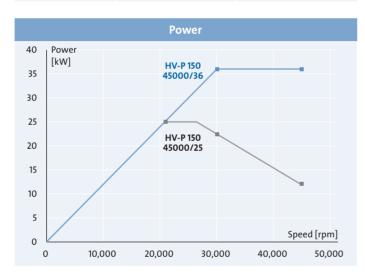
Large tools demand high power at relatively low speeds, whereas a relatively low power demand is often sufficient for small tools.

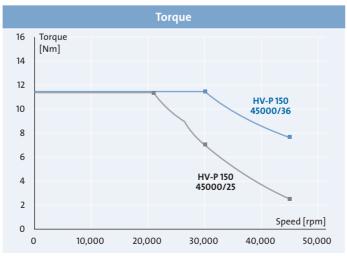
These diverse requirements can be substantially covered by a single spindle model with GMN high-speed spindles. They provide – depending on model size – high torque and thus make it possible to achieve high processing performance even in the low speed range.

This is made possible by asynchronous and synchronous motors especially designed for this field of application as well as by efficient liquid cooling of the spindles. The motors have high power density and achieve a very good efficiency rating.

Power and torque characteristics

In this catalog, GMN offers high speed spindles in a broad spectrum of model sizes and power ratings.

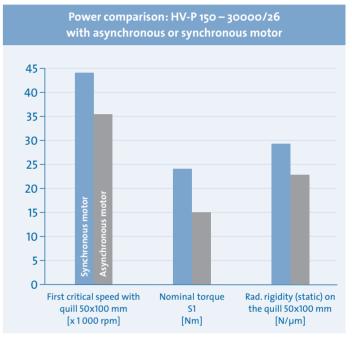

Various motor performance characteristics are available to meet your requirements.


Models with a large weak-field area are an economical solution when the power demand in the upper speed range is not very high.

Example:

The HV-P 150 – 45000 spindle has two possible motor designs:

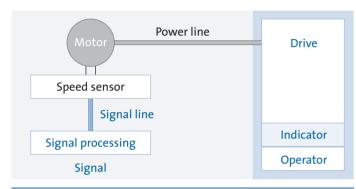
Power S6-60% [kW]		
at speed [min-1]	HV-P 150-45000/ 25	HV-P 150-45000/ 36
21,000	25	25
30,000	22	36
45,000	12	36
Input power S6-60% [kVA]		
	40	57



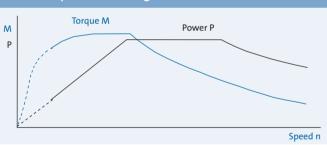
Synchronous motor with permanent magnet rotor

Where high demands are made on the spindle's performance capabilities, or for very high speeds (UHS spindles), GMN optionally employs synchronous motors with permanent magnet rotors.

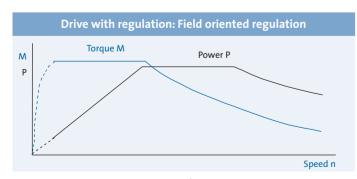
- \cdot Very high power and torque density
- \cdot Low rotor losses (no slip) reduce load-dependent heat development in critical areas of the spindle.
- \cdot The permanent magnet rotor permits realization of very rigid spindle shafts with high critical speed.
- Appropriate CFRP bandaging make it possible to achieve very high rotor circumferential speeds (circumferential speed up to 260 m/s for UHS spindles).


www.gmn.de

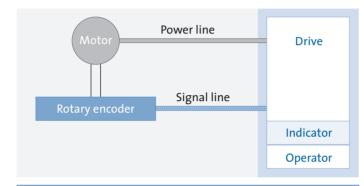
Power comparison: HV-P 150 – 30000/26 with asynchronous and synchronous motor					
Motor type			Asynchronous motor	Synchronous motor	Change
Radial rigidity	Spindle nose [N/µ	ım]	197.4	239.2	+21.2%
(static)	on the mandrel 50 x 100 mm [N/µ	um]	23.1	29.1	+26.0%
Radial rigidity	Spindle nose [N/µ	ım]	129.4	151.6	+17.2%
(30,000 rpm)	on the mandrel 50 x 100 mm [N/µ	ım]	19.4	24.9	+28.4%
First critical speed with mandrel 50 x 100 mm [rpm]			35,260	44,450	+26.1%
Nominal torque S1	[Nr	n]	15	24	+60.0%

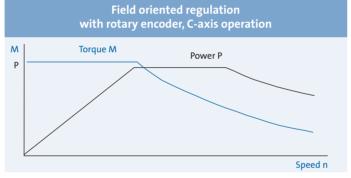

Drive systems Coolant supply through the spindle shaft

Drive without rotary encoder


GMN

Drive without regulation: Frequency controller with prescribed voltage across the U/f characteristic

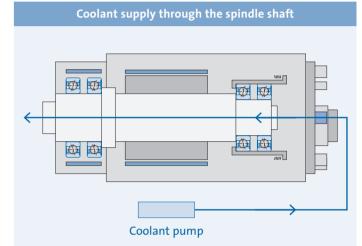



- · Output frequency up to 3,000 Hz¹⁾
- · Adjustment range to about 1:10
- · Ramp up and brake time about 10 sec
- · Shaft in a specified fixed position
- "Speed monitors" or "Tacho box" necessary
- · "Sparking" and "Load limit" reports with "effective load tracker" option

- · Output frequency up to 1,400 Hz1)
- · Within adjustment range 1:10 speed stability about 0.5%
- · Field oriented regulation algorithm
- · Ramp up and brake time about 1 sec

Drive with rotary encoder (C-axis operation)

- · Output frequency up to 1,400 Hz1)
- · Shaft positioning
- · Ramp up and brake time about 1 sec


Equipping the spindle with a supplementary central coolant supply through the spindle's shaft is possible. This feature provides a substantial improvement in workpiece cooling when processing offset holes and blind holes.

- · Cycle time reduction
- · Improved surface quality
- · Improved dimensional stability due to cooler finishing temperature
- · Reduced risk of heat cracking for high performance grinding

In consideration for different processing requirements, GMN offers two different systems to supply coolant through the shaft:

Low pressure rotary union Speed range up to: 120,000 rpm

- · Seal: gap seal / air purge
- · Maximum coolant pressure: 4 bar
- · Dry run permissible
- · Insensitive to pressure surges
- · Necessary filter fineness: < 0.1 mm
- · Installed spindle orientation: horizontal (other orientations on request)

www.gmn.de

High pressure rotary union Speed range up to: 75,000 rpm

- · Seal: contact disc seal
- · Maximum coolant pressure: dependent on spindle type, up to max. 50 bar (higher pressures on request)
- · Minimum pressure 3 bar
- · Dry run permissible
- · Pressure surges must be avoided
- · Necessary filter fineness: < 0.01 mm
- · Installed spindle orientation: horizontal (other orientations on request)

¹⁾ Various maximum output frequencies possible depending on manufacturer.

www.bergab.ru Берг АБ bergab@ya.ru тел. (495) 228-06-21, факс (495) 223-30-71

Maximum speeds

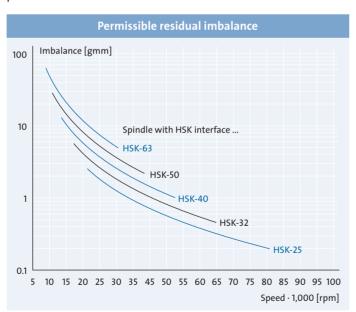
GMN high-speed spindles are designed for processing procedures carried out at extremely high cutting speeds.

GMN

Their performance profiles indicate the maximum speed values that can be achieved with consideration for the greatest possible running smoothness.

Imbalance spindle vibrations

Imbalanced mass distribution of rotating parts (spindle shaft, tool) with increasing speed induces sinusoidal imbalance vibrations which may be detrimental to machine operation and the quality of desired processing results.

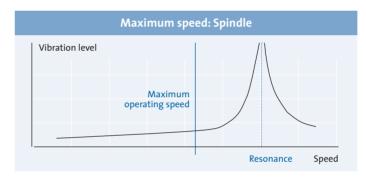

Shaft

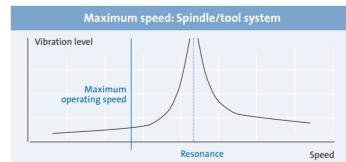
The highest processing quality in the production of GMN spindle shafts ensures a uniform mass distribution and minimum imbalance vibrations at maximum speeds.

Tool

Speed-intensive production processes demand particular attention to imbalance testing and may require the balancing of production-relevant tools in order to maintain vibration tolerances.

Long-term, comprehensive practical experience with precision milling has resulted in specific guidelines for maximum imbalance vibrations that still permit GMN spindles to provide optimal performance.

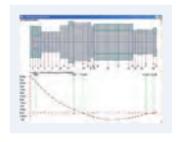


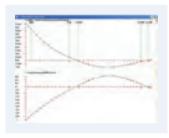

- · Applicable for short tools.
- Even better balancing may be necessary for tools with a long overhang or where exceptionally high processing quality is required.
- · Also applicable for spindles with grinding mandrel receiver (with comparable flat face diameter).

Spindle resonance vibrations

The resonance of rotating systems produces critical speed ranges in which extreme vibrations occur.

The use of tool attachments for machine operation can lower the critical speed range of the spindle/tool system and thus lead to a reduction of the maximum operating speed.





Vibration calculation

If tools with unusual dimensions or heavy weight are to be used, GMN offers to calculate the static and dynamic behavior of the envisioned spindle/tool system under operational conditions.

The proper analysis of calculation results delivers specific information about spindle selection and about tool optimization with consideration for load-dependent bending lines, rigidity, resonance and bearing loads.

Vibration monitoring

Vibration monitoring devices detect the spindle's operational movements and initiate a fault shutdown if critical values are reached in order to maintain the system's mechanical safety. Detection of vibrations causing wear to the spindle's bearing indicates when additional preventative maintenance is necessary to ensure long machine service life.

The selection and layout of such devices should be done such that vibrations caused by other machine components are disregarded.

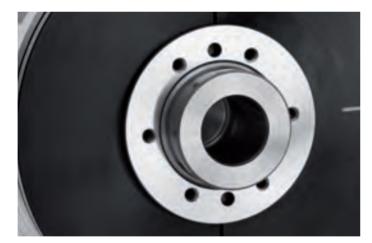
Tool interfaces Control of the contr

GMN standard: Internal taper with flat contact face

GMN

Because of the very high maximum speed ratings for type UHS, a GMN standard with internal taper/flat contact face and internal threads has been selected. This ensures a secure connection between shaft and tool over the entire speed range for the given spindle.

Fitting bore with flat contact


Series UHS (pages 24–25)

Interface	d [mm]	W [mm]	M	L ₁ [mm]	L ₂ [mm]	SW
U 07/10	7	10	M5	5	9	-
U 09/16	9	16	M8 (x 1.5)	7	16	14
U12/18	12	18	M10 x 1.5	9	22	16
U 16/23	16	23	M14 x 1.25	12	22	20

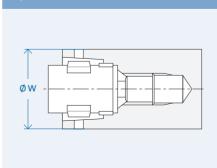
www.gmn.de

GMN standard: Fitting bores with flat contact face

High-speed spindles in type series HS, HV-X and HSX are equipped with the GMN standard – fitting bore/flat contact face and internal threads – that has proven itself over many decades.


ace	
	D
	D
	D
	D
7	D
	D
	D
	D
	D
	D
	D
	_ n

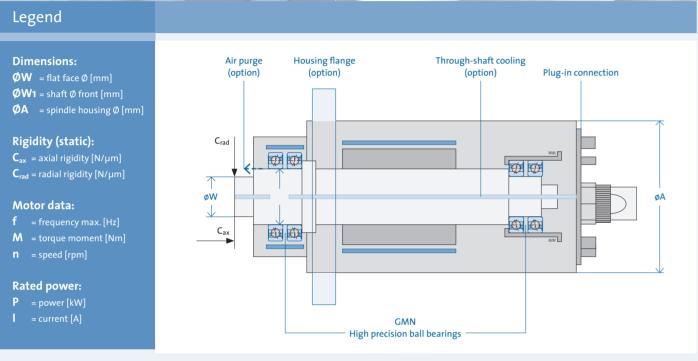
Series HS, HV-X, HSX (pages 26-41)

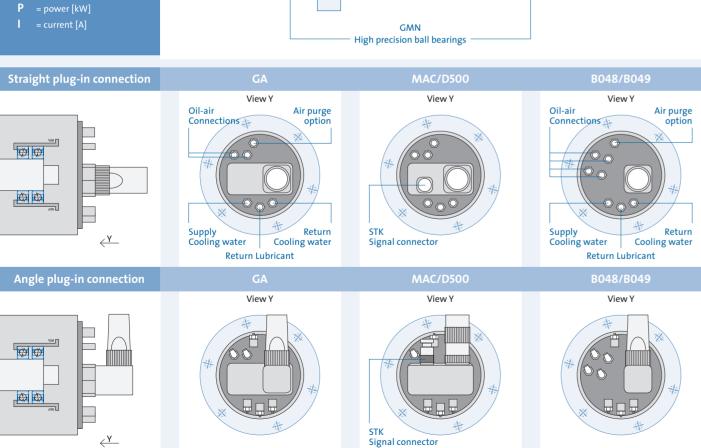

Interface	d [mm]	d Tolerance [μm]	W [mm]	M	L ₁ [mm]	L ₂ [mm]	SW
D 04/08	4	+5/+2	8	M4 (x 0.7)	6	8	7
D 06/12	6	+5/+2	12	M6 (x 1)	9	11	11
D 08/14	8	+5/+2	14	M8 (x 1.25)	12	14	13
D 09/16	9	+5/+2	16	M9 (x 1.25)	13	14	14
D 10/18	10	+5/+2	18	M10 (x 1.5)	15	19	16
D 14/23	14	+7/+2	23	M14 x 1.5	20	19	20
D 16/28	16	+7/+2	28	M16 x 1.5	24	19	24
D 22/38	22	+7/+2	38	M22 x 2	34	25	32
D 28/43	28	+8/+3	43	M28 x 2	42	25	38
D 32/53	32	+8/+3	53	M32 x 2	46	25	48
D 36/63	36	+8/+3	63	M36 x 2	50	30	55
D 36/68	36	+8/+3	68	M36 x 2	50	30	60

Taper hollow shaft with flat contact face: HSK-C

Taper hollow shafts (HSK) with flat contact faces are standardized per DIN 69893. The various shapes differ with respect to pusher dog recess and collar. Form C has been especially developed for use with manual tool change systems. Spindles in type series HV-P/HSP/HSP..g can accept tools with taper hollow shafts of form A and C. The HSK interface allows these spindles to be operated in both directions of rotation.

Taper hollow shaft with flat contact face

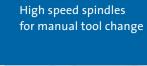



Series HV-P, HSP, HSP.. g (pages 42-69)

Interface	W [mm]	Dimensions
HSK-C25	25	
HSK-C32	32	
HSK-C40	40	
HSK-C50	50	remaining dimensions per DIN 69893-1
HSK-C63	63	
HSK-C80	80	
HSK-C100	100	

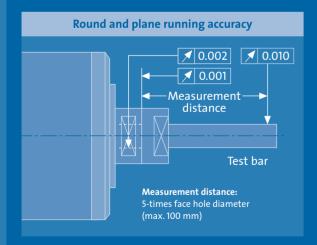
bergab@ya.ru Берг АБ тел. (495) 228-06-21, факс (495) 223-30-71 www.bergab.ru

1/000 Legend and features



Features	Standard	Option
Housing	Cylindrical housing Bushing-Ø: 80–230 mm	Cylindrical housing with flange housing Block housing
Motor Series: UHS	Motor voltage 200 V Synchronous motor Speed: max. 250,000 rpm Power: S1 max. 4.4 kW	
Series: HS	Motor voltage 200 V Asynchronous motor Speed: max. 180,000 rpm Power: S1 max. 0.95 kW	Synchronous motor 1)
Series HV-X, HSX	Motor voltage 350 V Asynchronous motor Speed: max. 105,000 rpm Power: S1 max. 33 kW	Motor voltage 200 V / 460 V Synchronous motor ¹⁾
Series: HV-P, HSP	Motor voltage 350 V Asynchronous motor Speed: max. 60,000 rpm Power: S1 max. 45 kW	Motor voltage 200 V / 460 V Synchronous motor ¹⁾
Lubrication	Oil-air lubrication Permanent grease lubrication (HSPg)	Air purge Permanent grease lubrication with air purge
Coolant supply through spindle shaft		Low pressure (du) (gap seal / air purge) High pressure (dh) (contact disc seal)
Sensor technology	Speed sensor beginning with housing Ø 100 mm	Rotary encoder only with HV-X and HV-P beginning with housing Ø 120 mm, remaining spindles on request

GMN


www.gmn.de

GMN

Technical data Features

GMN High speed spindles for manual tool change GMN standard tool interface

UHS

High-speed grinding spindles
Machining of small and very small bores
Delivery incl. frequency converter and lubricating device

- · Housing Ø: 80 / 100 mm
- · Speed: max. 250,000 rpm
- · Power: S1 max. 4.4 kW
- · Motor: Synchronous motor
- · Tool interface: GMN standard Internal taper with flat contact face
- · Lubrication: Oil-air lubrication

Н

High-speed grinding spindles Machining of small bores

- · Housing Ø: 80 mm
- · Speed: max. 180,000 rpm
- Power: S1 max. 0.95 kW
- · Motor: Asynchronous motor
- Tool interface: GMN standard Fitting bore with flat contact face
- · Lubrication: Oil-air lubrication

HV-X

High performance grinding spindles Grinding applications with high rigidity and power requirements

- · Housing Ø: 100 / 120 / 150 mm
- · Speed: max. 105,000 rpm
- · Power: S1 max. 33 kW
- · Motor: Asynchronous motor
- Tool interface: GMN standard Fitting bore with flat contact face
- · Lubrication: Oil-air lubrication

HSX

High performance grinding spindles Universal grinding applications

- · Housing Ø: 100 / 120 / 150 / 170 mm
- · Speed: max. 105,000 rpm
- · Power: S1 max. 32 kW
- · Motor: Asynchronous motor
- Tool interface: GMN standard Fitting bore with flat contact face
- · Lubrication: Oil-air lubrication

UHS 80 - 250000/0.5 80

> 250,000 10

> > 10

7

12

0.45

0.02

250,000

0.5

0.02 250,000

GMN

High speed spindles for manual tool change

Series: UHS

Cylindrical housing: $\emptyset = 80 \, \text{mm} / 100 \, \text{mm}$

Tool interface: **GMN** standard

Motor: Synchronous motor

Bearing arrangement: **GMN** high-precision ball bearings

Lubrication: Oil-air lubrication

	•	
TECHNICA	AL DATA	4
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W_1	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C _{rad}	[N/µm]
Motor design		
Frequency max.	f _{max}	[Hz]
Nominal converter	voltage ¹⁾	[V]
Power		[kW]
Torque	M _{S1}	[Nm]
at speed	n	[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	M _{56-60%}	[Nm]
at speed	n	[rpm]

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

1) Minimum required output voltage of the frequency converter

+ Standard

o Option

x on request

n]	
n]	
n]	
μm]	
μm] μm]	
	20
]	
	2
/] n]	
n]	
m]	
	2
/]	
/] n] m]	
m]	
	3

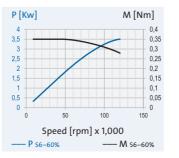

B049	-	-
+	-	-
х	-	-
х	-	-
	-	
	-	
	-	
	-	
	+	
	Х	
	Х	

P [Kw]	M [Nm]
0,6	0,035
),5 —	- 0,03
),4	- 0,025
),3	0,02
	- 0,015
),2	- 0,01
),1	- 0,005
0	0
0 50 100	150 200 250 300
Speed [rpm] x 1,000
P s6-60%	M s6-60%

P [Kw]				M	[Nm]
1,2					0,08
1 -			Ш	Ш	- 0,07
			\sim		- 0,06
0,8				$\overline{}$	0,05
0,6					0,04
0,4	/				- 0,03
0,2					- 0,02
					- 0,01
0 0	50	100	150	200	250
U	50	100	100	200	200
Speed [rpm] x 1,000					
P se	5-60%		-	— M :	56-60%

0.000				
UHS	80 - 2000	00/1		
80				
	200,000			
	10			
	U 07/10			
	10			
	14			
	13			
200 V	-	-		
	3,333			
200	-	-		
	0.9			
	0.04			
	200,000			
7.7	-	-		
	1			
	0.05			
	200,000			

B049	-	-
+	-	-
х	-	-
x	-	-
	-	
	-	
	-	
	-	
	+	
	х	
	х	



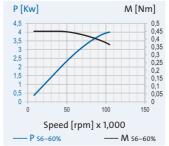
UHS 1	100 - 12000	00/3.5	
	100		
	120,000		
	17		
	U 09/16		
	16		
	48		
	29		
200 V	350 V	-	
	2,000		
200	350	-	
	3		
	0.24		
	120,000		
14	8.2	-	
	3.5		
	0,28		

B048	B048	-
+	+	-
0	0	-
0	0	-
	0	
	-	
	-	
	+	
	+	
	0	
	Х	
	0	

120,000

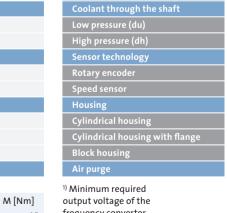
9.5

UHS	100 - 1030	00/4	ОПЭ	100 - 900	00/3
100		100			
105,000		90,000			
20		25			
U 12/18		U 16/23			
	18			23	
51			57		
37			58		
200 V	350 V	-	200 V	350 V	-
	1,750			1,500	
200	350	-	200	350	-
	3.5			4.4	
	0.32			0.47	
	105,000			90,000	
14	7.9	-	17	9.7	-
	4			5	
	0.36			0.53	
	105,000			90,000	
16	9	-	19	11	-


B048

0

Speed [rpm] x 1,000


P [Kw]

-	B048	B048	-	B048
-	+	+	-	+
-	0	0	-	0
-	0	0	-	0
		0		
		-		
		-		
		+		
		+		
		0		
		x		
		0		

	TECHNICA	AL DATA	١
	Spindle housing Ø	А	[mm]
	Speed max.	n _{max}	[rpm]
	Bearing Ø front	W_1	[mm]
	Tool interface		
	Flat contact face Ø	W	[mm]
	Static rigidity		
	axial	C _{ax}	[N/µm]
	radial	C_rad	[N/µm]
	Motor design		
	Frequency max.	f_{max}	[Hz]
	Nominal converter	voltage ¹⁾	[V]
	Power	P _{S1}	[kW]
	Torque	M _{S1}	[Nm]
	at speed		[rpm]
	Current		[A]
	Power	P _{s6-60%}	[kW]
	Torque	M _{56-60%}	[Nm]
	at speed	n	[rpm]
	Current	I _{56-60%}	[A]

10000

Angle plug-in connection Fixed cable XXm

frequency converter + Standard

o Option

- 0,1

x on request

180,000

0.3

0.02 180,000

0.4

180,000

200

1.8

80

150,000

15

2,500

0.4

0.03

150,000

0.5

0.03

150,000

200

2.3

Static rigidity

Motor:

Tool interface:

GMN standard

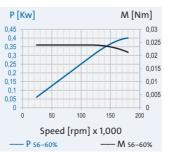
Asynchronous motor

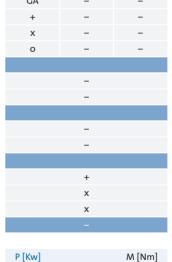
Bearing arrangement:

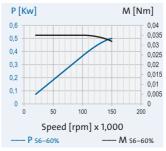
GMN high precision ball bearings

Lubrication:

Oil-air lubrication


AL DAI	Α
) A	[mm]
n _{max}	[rpm]
W_1	[mm]
ð W	[mm]
C _{ax}	[N/µm]
C_{rad}	[N/µm]
f_{max}	[Hz]
r voltage¹) [V]
	[kW]
M _{S1}	[Nm]
	[rpm]
	[A]
P _{56-60%}	[kW]
	fac 1
$M_{56-60\%}$	[Nm]
M _{56-60%}	[rpm]
	Max Max Crad fmax rvoltage Ms1 n Is1 Ps6-60%


Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge


¹⁾ Minimum required output voltage of the frequency converter

- + Standard
- o Option
- x on request

GA	-	-
+	-	-
Х	-	-
0	-	-
	-	
	-	
	-	
	-	
	+	
	Х	
	Х	
	-	

80								
120,000								
12								
	D 06/12							
	12							
	11							
	21							
200 V	-	-						
	2,000							
200	-	-						
	0.07							
	120,000							
5.4	-	-						
	1.1							
	0.09							
	120,000							
6.5	-	-						

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

- P [Kw] M [Nm]

 1.2

 1
 0.8
 0.6
 0.4
 0.2
 0
 0
 50
 100
 150

 Speed [rpm] x 1,000
- ¹⁾ Minimum required output voltage of the frequency converter

- + Standard
- o Option
- x on request

www.gmn.de

Series: HV-X

Cylindrical housing: $\emptyset = 100 \, \text{mm}$

GMN

High speed spindles for manual tool change

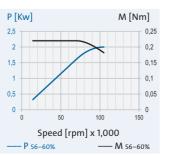
Tool interface: GMN standard

Motor: Asynchronous motor

Bearing arrangement: GMN high precision ball bearings

Lubrication:
Oil-air lubrication

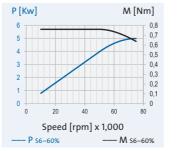
l			
	TECHNICA	AL DATA	1
	Spindle housing Ø	А	[mm]
	Speed max.	n _{max}	[rpm]
	Bearing Ø front	W_1	[mm]
	Tool interface		
	Flat contact face Ø	W	[mm]
	Static rigidity		
	axial	C _{ax}	[N/µm]
	radial	C_rad	[N/µm]
	Motor design		
	Frequency max.	f_{max}	[Hz]
	Nominal converter		[V]
	Power		[kW]
	Torque	M _{S1}	[Nm]
	at speed	n	[rpm]
	Current	I _{S1}	[A]
	Power	P _{56-60%}	[kW]
	Torque	M _{56-60%}	[Nm]
	at speed	n	[rpm]


Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

¹⁾ Minimum required output voltage of the frequency converter

- + Standard
- o Option
- x on request

HV-X 100 - 105000/2				
		HV-X	100 - 900	00/3
100			100	
105,000			90,000	
17			20	
D 09/16			D 10/18	
16			18	
33			37	
35		40		
200 V 350 V 460 V	20	00 V	350 V	460 V
1,750			1,500	
200 350 460	2	200	350	460
1.8			2.5	
0.16			0.27	
105,000			90,000	
9.6 5.5 4.2		13	7.5	5,7
2			3	
0.18			0.32	
105,000			90,000	
11 6 4.6		16	9	6.8


GA	GA	GA	GA	GA	G
+	+	+	+	+	+
0	О	0	0	0	C
0	О	0	0	0	C
	О			0	
	Х			х	
	-			-	
	+			+	
	+			+	
	0			0	
	Х			Х	
	0			0	

P [Kw]				M	[Nm]
3,5 3 2,5 2 1,5 1	/	/	/	>	0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05
0 0	20	40	60	80	100
Speed [rpm] x 1,000 P s6-60% M s6-60%					

- 19							
HV-)	K 100 - 750	00/5					
	100						
	75,000						
	25						
	D 14/23						
	23						
	53						
	56						
200 V	350 V	460 V					
	1,250						
200	350	460					
	4						
	0.51						
	75,000						
18	11	8					
	5						
	0.64						
	75,000						
23	13	9.9					

GA	GA		GA	GA	GA
+	+		+	+	+
0	0		0	0	0
0	0		0	0	0
0				0	
Х				Х	
-				-	
+				+	
+				+	
0				0	
X				Х	
0				0	
	+ 0 0 0 X - + 0 X	+ + + O O O O O O O O O O O O O O O O O	+ + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ + + + + O O O O O O O O O O O O O O O	+ + + + + + + + + + + + + + + + + + +

P [Kw]			٨	۱ [Nm]
10 9 8 7 6 5 4 3 2	/	7	\	2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2
0	20	40	60	80
Speed [rpm] x 1,000				
P s6	-60%		M	56-60%

HV-X 100 - 60000/9

100

60,000 30

28

62

73

350

7.5

1.4

51,000

24

9

1.69 51,000

28

200

42

460

HV-)	(100 - 450	00/9
	100	
	45,000	
	40	
	D 22/38	
	38	
	76	
	85	
200 V	350 V	460 V
	1,500	
200	350	460
	7.5	
	2.39	
	30,000	
42	24	18
	9	
	2.86	

30,000

28

GA

0

0

GΑ

GA

10000

200

49

HV-X 100 - 30000/9

100

30,000

45

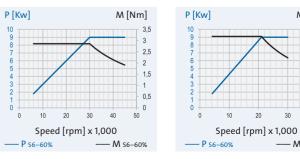
43

80

74

350

7.5


3.41

21,000

28

21,000

	,	
53	30	23
MAC	GA	GA
+	+	+
0	0	0
0	0	0
	0	
	X	
	-	
	+	
	+	
	0	
	x	

Берг АБ

bergab@ya.ru

GA

MAC

460

GA

HV-X 120 - 30000/18

GMN

High speed spindles for manual tool change

Series: HV-X

Cylindrical housing: $\emptyset = 120 \, \text{mm}$

Tool interface: **GMN** standard

Motor: Asynchronous motor

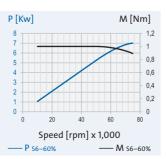
Bearing arrangement: **GMN** high precision ball bearings

Lubrication: Oil-air lubrication

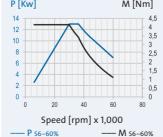
TECHNIC	AL DAT	A
Spindle housing @	ÞΑ	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W_1	[mm]
Tool interface		
Flat contact face (⊅W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C_{rad}	[N/µm]
Motor design		
Frequency max.	f _{max}	[Hz]
Nominal converte	r voltage¹) [V]
Power	P _{S1}	[kW]
Torque	M _{S1}	[Nm]
at speed	n	[rpm]
Current	I _{S1}	[A]
Power	P _{s6-60%}	[kW]
Torque	M _{s6-60%}	[Nm]
at speed	n	[rpm]

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

1) Minimum required output voltage of the frequency converter


+ Standard

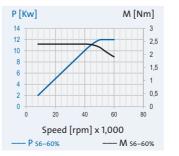
o Option


x on request

					_
HV-	X 120 - 750	00/7	HV-X	120 - 600	00/13
	120			120	
	75,000			60,000	
	25			30	
	D 14/23			D 16/28	
	23			28	
	54			69	
	68			97	
200 V	350 V	460 V	200 V	350 V	460
	1,250			2,000	
200	350	460	200	350	460
	6			11	
	0.76			3.5	
	75,000			30,000	
32	18	14	58	33	25
	7			13	
	0.89			4.14	
	75,000			30,000	
40	20	10		27	20

GA	GA	GA
+	+	+
0	0	0
0	0	0
	0	
	Х	
	0	
	+	
	+	
	0	
	Х	
	0	

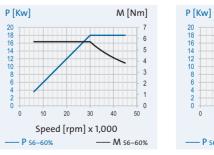
	0	
	0	
	+	
	+	
	0	
	х	
	0	
P [Kw]		M [Nm]
14		4,5
12		3.5
10		- 3,5 - 3
8 /		2,5



-						
HV-X 120 - 60000/12						
120						
60,000						
30						
D 16/28						
28						
69						
97						
350 V	460 V					
1,000						
350	460					
10.5						
1.97						
51,000						
25	19					
12						
2.25						
2.25						
	120 60,000 30 D 16/28 28 69 97 350 V 1,000 350 10.5 1.97 51,000 25 12					

GA	GA	GA
+	+	+
0	0	0
0	0	0
	0	
	0	
	0	
	+	
	+	
	0	
	Х	
	0	

29


22

	120		120		
	45,000		30,000		
	45		55		
	D 28/43		D 32/53		
	43			53	
	91			99	
	125			145	
200 V	350 V	460 V	200 V	350 V	460 V
	1,500			1,000	
200	350	460	200	350	460
	15			15	
	4.77			5.97	
	30,000			24,000	
72	41	31	72 41 31		31
	18			18	
	5.73		7.16		
	30,000			24,000	
89	51	39	89	51	39

HV-X 120 - 45000/18

MAC	GA	GA	MAC	GA	GA
+	+	+	+	+	+
0	0	0	0	0	0
0	0	0	0	0	0
	0			0	
	0			0	
	0			0	
	+			+	
	+			+	
	0			0	
	Х			X	
	0			0	

TECHNIC	AL DATA	V
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C _{rad}	[N/µm]
Motor design		
Frequency max.	f _{max}	[Hz]
Nominal converte	voltage ¹⁾	[V]
Power	P _{S1}	[kW]
Torque	M _{S1}	[Nm]
at speed		[rpm]
Current		[A]
Power	P _{S6-60%}	[kW]
Torque	M _{S6-60%}	[Nm]
at speed	n	[rpm]
Current	I _{S6-60%}	[A]

10000

	Straight plug-in connection
ı	Angle plug-in connection
ı	Fixed cable XXm
(Coolant through the shaft
ľ	Low pressure (du)
ľ	High pressure (dh)
9	Sensor technology
ľ	Rotary encoder
9	Speed sensor
ı	Housing
(Cylindrical housing
(Cylindrical housing with flange
ľ	Block housing
	Air purge
,	Air purge

1) Minimum required output voltage of the frequency converter

+ Standard

Speed [rpm] x 1,000

o Option

x on request

Series: HV-X 10000 Cylindrical housing: $Ø = 150 \, \text{mm}$ TECHNICAL DATA HV-X 150 - 30000/37

Tool interface: GMN standard

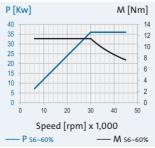
Motor:

Asynchronous motor

Bearing arrangement: GMN high precision ball bearings

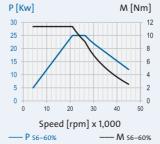
Lubrication:

Oil-air lubrication


TECHNICAL DATA				
Spindle housing Ø	A	[mm]		
Speed max.	n _{max}	[rpm]		
Bearing Ø front	W ₁	[mm]		
Tool interface				
Flat contact face Ø	W	[mm]		
Static rigidity				
axial	C _{ax}	[N/µm]		
radial	C _{rad}	[N/µm]		
Motor design				
Frequency max.	f_{max}	[Hz]		
Nominal converter	voltage ¹⁾	[V]		
Power		[kW]		
Torque	M_{S1}	[Nm]		
at speed	n	[rpm]		
Current	I _{S1}	[A]		
Power	P _{56-60%}	[kW]		
Torque	M _{56-60%}	[Nm]		
at speed	n	[rpm]		
Current		[٨]		

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request


HV-X 150 - 45000/36				
	150			
	45,000			
	45			
	D 28/43			
	43			
	91			
	150			
200 V	350 V	460 V		
	1,500			
200	350	460		
	32			
	10.2			
	30,000			
152	87	66		
	36			
	11.5			
	30,000			
166	95	72		

D500	D500	MAC
+	+	+
0	0	0
0	0	0
	Х	
	0	
	0	
	+	
	+	
	0	
	Х	
	0	

	HV-X 150 - 45000/25		
150			
45,000			
45			
D 28/43			
43			
91			
150			
350 V	460 V		
1,500			
350	460		
22			
10			
21,000			
21,000			
60	46		
	46		
60	46		
60 25	46		
	45,000 45 D 28/43 43 91 150 350 V 1,500 350 D 22 10		

D500	MAC	MAC
+	+	+
0	0	0
0	0	0
	X	
	0	
	0	
	+	
	+	
	0	
	X	
	0	

	16,8	
	21,000	
161	92	70
D500	D500	MAC
+	+	+
0	0	0
0	0	0
	х	
	0	
	0	
	+	
	+	
	0	
	Х	

150

30,000 65

63

121

197

1,000

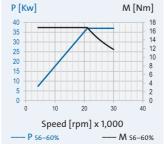
350

33

15 21,000

84

37


16.8

460

64

200

147

150 30,000 65 D 36/63 63 121 197 200 V 350 V 460 V 1,000 200 350 460 23 14.6 15,000
65 D 36/63 63 121 197 200 V 350 V 460 V 1,000 200 350 460 23 14.6 15,000
D 36/63 63 121 197 200 V 350 V 460 V 1,000 200 350 460 23 14.6 15,000
63 121 197 200 V 350 V 460 V 1,000 200 350 460 23 14.6 15,000
121 197 200 V 350 V 460 V 1,000 200 350 460 23 14.6
197 200 V 350 V 460 V 1,000 200 350 460 23 14.6 15,000
197 200 V 350 V 460 V 1,000 200 350 460 23 14.6 15,000
200 V 350 V 460 V 1,000 200 350 460 23 14.6 15,000
1,000 200 350 460 23 14.6 15,000
200 350 460 23 14.6 15,000
23 14.6 15,000
14.6 15,000
15,000
105 60 46
26
16.6

Speed [rpm] x 1,000

117

D500

P [Kw]

15,000		at speed		[rpm]
67	51	Current	I _{s6-60%}	[A]
		Electrical conn	ection	
MAC	MAC	Plug type		
+	+	Straight plug-i	n connectio	
0	0	Angle plug-in	connection	
0	0	Fixed cable XX	m	
		Coolant throu	gh the shaft	
X		Low pressure (du)	
0		High pressure	(dh)	
		Sensor techno	logy	
0		Rotary encode	r	
+		Speed sensor		
		Housing		
+		Cylindrical hou	ısing	
О		Cylindrical hou	ısing with fl	ange
x		Block housing		
0		Air purge		

Flat contact face Ø W Static rigidity

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

---- P s6-60% 33 HSX 100 - 105000/2

100

105,000 15

14

26

29

1,750

350 1.7

0.16 105,000

105,000 6.5

Series: HSX Cylindrical housing: $\emptyset = 100 \, \text{mm}$

Tool interface: **GMN** standard

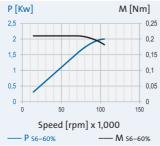
Motor:

Asynchronous motor

Bearing arrangement: GMN high precision ball bearings

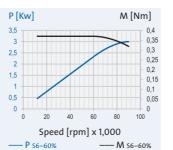
Lubrication:

Oil-air lubrication


TECHNICA	AL DATA	١
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C _{rad}	[N/µm]
Motor design		
Frequency max.	f _{max}	[Hz]
Nominal converter	voltage ¹⁾	[V]
Power	P _{S1}	[kW]
Torque	M _{S1}	[Nm]
at speed		[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	M _{56-60%}	[Nm]
at speed	n	[rpm]
Comment		FA1

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

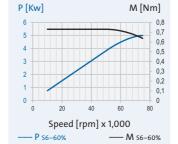
- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request


1		
DATA	1	
	[mm]	
эx	[rpm]	
	[mm]	
	[mm]	
	[N/µm]	
i	[N/µm]	
		200
x	[Hz]	
tage ¹⁾		200
	[kW]	
1	[Nm]	
	[rpm]	
	[A]	8,8
-60%	[kW]	
6-60%	[Nm]	
	[rpm]	
60%	[A]	11

GA	GA	-
+	+	-
0	0	-
0	0	-
	0	
	-	
	-	
	+	
	+	
	0	
	Х	
	0	

HSX	100 - 900	00/3
	100	
	90,000	
	17	
	D 09/16	
	16	
	36	
	33	
200 V	350 V	-
	1,500	
200	350	-
	2.5	
	0.27	
	90,000	
13	7.5	-
	3	
	0.32	
	90,000	

GA	GA	-
+	+	-
0	0	-
0	0	-
	0	
	-	
	-	
	+	
	+	
	0	
	х	
	0	


100				100		
75,000				60,000		
20				25		
	D 10/18			D 14/23		
	18			23		
	48				53	
	46				53	
200 V	350 V	-		200 V	350 V	-
	1,250				1,000	
200	350	-		200	350	-
	4.2				4.2	
	0.54				0.67	
	75,000				60,000	
18	11	-		18	11	-
	5				5	
	0.64				0.8	
	75,000				60,000	
23	13	-		23	13	-

HSX 100 - 75000/5

GA	GA	-	GA	GA	-
+	+	-	+	+	-
0	0	-	0	0	-
0	0	-	0	0	-
	0			0	
	-			-	
	-			-	
	+			+	
	+			+	
	0			0	
	х			Х	
	0			0	

P [Kw]

Speed [rpm] x 1,000

HSX	100 - 6000	00/5	TECHNICAL DATA		
	100		Spindle housing Ø	А	[mm]
	60,000		Speed max.	n _{max}	[rpm]
	25		Bearing Ø front	W ₁	[mm]
	D 14/23		Tool interface		
	23		Flat contact face Ø	W	[mm]
			Static rigidity		
	53		axial	C _{ax}	[N/µm
	53		radial		[N/µm
00 V	350 V	-	Motor design		
	1,000		Frequency max.	f_{max}	[Hz]
00	350	-	Nominal converte		[V]
	4.2		Power	P _{S1}	[kW]
	0.67		Torque	M _{S1}	[Nm]
	60,000		at speed	n	[rpm]
18	11	-	Current	I _{s1}	[A]
	5		Power	P _{56-60%}	[kW]
	0.8		Torque	M _{56-60%}	[Nm]
	60,000		at speed	n	[rpm]
23	13	-	Current	I _{56-60%}	[A]

10000

Ele	ectrical connection
Pl	ug type
St	raight plug-in connection
Ar	igle plug-in connection
Fix	ked cable XXm
Co	olant through the shaft
Lo	w pressure (du)
Hi	gh pressure (dh)
Se	nsor technology
Rc	tary encoder
Sp	eed sensor
Н	ousing
Су	lindrical housing
Су	lindrical housing with flange
ы	ock housing
Ai	r purge

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

0 - 60000/7

460

HSX 120 - 30000/13

120

30,000

45

43

98

131

1,500

350

11

5.84

18,000

41

13

6.9

18,000

48

460

Series: HSX Cylindrical housing: $\emptyset = 120 \, \text{mm}$

Tool interface: **GMN** standard

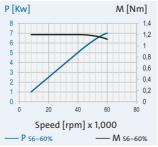
Motor:

Asynchronous motor

Bearing arrangement: GMN high precision ball bearings

Lubrication:

Oil-air lubrication

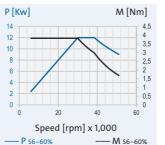

TECHNIC	AL DATA	4
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C_rad	[N/µm]
Motor design		
Frequency max.	f_{max}	[Hz]
Nominal converter	r voltage ¹⁾	[V]
Power		[kW]
Torque	M_{51}	[Nm]
at speed		[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	M _{56-60%}	[Nm]
at speed	n	[rpm]

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

DATA	1	HSX	120 - 60
	[mm]		120
x	[rpm]		60,000
	[mm]		25
			D 14/23
	[mm]		23
	[N/µm]		54
	[N/µm]		57
		200 V	350 V
	[Hz]		1,000
tage ¹⁾	[V]	200	350
	[kW]		6
	[Nm]		0.96
	[rpm]		60,000
	[A]	28	16
60%	[kW]		7
-60%	[Nm]		1.11
	[rpm]		60,000
50%	[A]	32	18

GA	GA	GA
+	+	+
0	0	0
0	0	0
	0	
	Х	
	Х	
	+	
	+	
	0	
	х	
	0	



	1	
HSX	120 - 5100	0/12
	120	
	51,000	
	30	
	D 16/28	
	28	
	70	
	102	
200 V	350 V	460 V
	1,700	
200	350	460
	11	
	3.5	
	30,000	
63	36	27
	12	
	3.82	
	30,000	

67

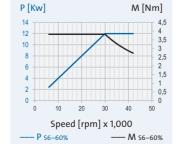
MAC GA GA	
+ + +	
0 0 0	
0 0 0	
0	
X	
X	
+	
+	
0	
X	
0	

38

	90		
	121		
200 V	350 V	460 V	200 V
	1,400		
200	350	460	200
	11		
	3.5		
	30,000		
63	36	27	72
	12		
	3.82		
	30,000		
67	38	29	84
MAC	GA	GA	MAC
+	+	+	+
0	0	0	0
0	0	0	0

HSX 120 - 42000/12

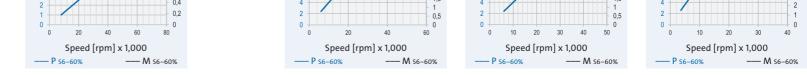
120


42,000

40

38

MAC	GA	GA
+	+	+
0	0	0
0	0	0
	0	
	X	
	Х	
	+	
	+	
	0	
	X	
	0	


P [Kw]

TECHNIC	AL DAT	Ą
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C _{rad}	[N/µm]
Motor design		
Frequency max.	f_{max}	[Hz]
Nominal converte	r voltage¹) [V]
Power	P _{S1}	[kW]
Torque	M _{S1}	[Nm]
at speed		[rpm]
Current		[A]
Power	P _{56-60%}	[kW]
Torque	M _{S6-60%}	[Nm]
at speed	n	[rpm]
Current	I _{56-60%}	[A]

Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

HSX 150 - 24000/17

150

24,000

65

63

130

147

350

14

12,2

11,000

37

17

460

200

65

10000

GMN High speed spindles for manual tool change

Series: HSX

Cylindrical housing: $\emptyset = 150 \,\mathrm{mm}$

Tool interface: **GMN** standard

Motor: Asynchronous motor

Bearing arrangement: **GMN** high precision ball bearings

Lubrication: Oil-air lubrication

TECHNIC	AL DAT	A
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	v	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C_{rad}	[N/µm]
Motor design		
Frequency max.	f_{max}	[Hz]
Nominal converte) [V]
Power		[kW]
Torque	M_{S1}	[Nm]
at speed	n	[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	M _{56-60%}	[Nm]
at speed	n	[rpm]

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

¹⁾ Minimum required output voltage of the frequency converter

	N.	
mm]		
rpm]		
mm]		
mm]		
N/µm] N/µm]		
N/µm]		
Hz]		
V]		
kW]		
Nm]		
rpm]		
Nm] rpm] A]		
kW]		
kW] Nm] rpm]		
rpm]		
۸1		

200

102

MAC	MAC	GA
+	+	+
0	0	0
0	0	0
	0	
	х	
	Х	
	+	
	+	
	0	
	Х	
	0	

HSX 150 - 42000/16

150

42,000

40

38

90

147

1,400

350

14

4.95

27,000

49

16

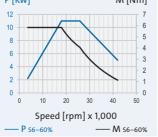
5.66 27,000

58

460

37

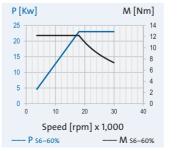
44


[Kw]				M	[Nm]
8					6
6 4			$\overline{}$		- 5
2		/		\setminus	4
0 8		/			- 3
6					2
4 2					- 1
0		Щ		ЩП	0
0	10	20	30	40	50
	Spee	d [rpr	n] x 1,0	000	
P se	5-60%		_	— M s	6-60%

P [Kw]				M	[Nm]
12					7
10		$\overline{}$	\setminus		- 6
8	/	/			- 5
6				\setminus	- 3
4					- 2
2 -	/			\setminus	- 1
0	ЩЦ	ш	Щ	шш	0
0	10	20	30	40	50
	Spee	d [rpr	n] x 1,	000	
P :	56-60%		-	— M s	66-60%

HSX 150 - 42000/11					
150					
	42,000				
	40				
	D 22/38				
	38				
	90				
	147				
200 V	350 V	460 V			
	1,400				
200	350	460			
	9.5				
	5.04				
	18,000				
47	27	21			
47	27 11	21			
47		21			

MAC	GA	GA
+	+	+
0	0	0
0	0	0
	0	
	Х	
	Х	
	+	
	+	
	0	
	Х	
	0	


31

HSX	150 - 3000	0/23
	150	
	30,000	
	55	
	D 32/53	
	53	
	111	
	177	
200 V	350 V	460 V
	1,000	
200	350	460
	18	
	9.55	
	18,000	
86	49	37
	23	

	1,000			1,000		
200	350	460	200	350	460	
	18			14		
	9.55			9.9		
	18,000			13,500		
86	49	37	63	36	27	
	23		16			
	12.2		11.3			
	18,000			13,500		
110	63	48	70	40	30	
MAC	MAC	GA	MAC	GA	GA	
+	+	+	+	+	+	
0	0	0	0	0	0	
0	0	0	0	0	0	

MAC	GA	MAC	GA	GA
+	+	+	+	+
0	0	0	0	0
0	0	0	0	0
Х			Х	
Х			Х	
Х			Х	
+			+	
+			+	
0			0	
Х			Х	
0			0	

P [Kw]			N	l [Nm]
18				12
16	\rightarrow			- 10
14	/			8
10				- 6
8 6	/	/		4
4 /				- 2
0	ЩП			0
0	10	20	30	40
!	Speed	[rpm] x	1,000	
P s6-60%				56-60%

HSX 150 - 30000/16

150

30,000

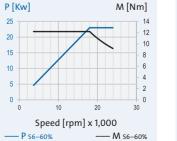
55

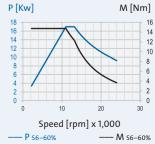
53

111

177

	150	
	24,000	
	65	
	D 36/63	
	63	
	130	
	147	
200 V	350 V	460 V
	800	
200	350	460
	18	
	9,55	
	18,000	
86	49	37
	23	
	12.2	
	18,000	


63


MAC

MAC

HSX 150 - 24000/23

	11,000	
79	45	34
MAC	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	х	
	х	
	+	
	+	
	0	
	X	
	MAC + 0	11,000 79 45 MAC GA + + + 0 0 0 0 - x x + + 0 x

⁺ Standard

o Option

x on request

for manual tool change

GMN

факс (495) 223-30-71

www.gmn.de

10000

HSX 170 - 18000/23

170

18,000

70

68

201

325

350

20

25.5

7,500

51

23

29.3

7,500

58

460

200

89

Series: HSX

Cylindrical housing: $Ø = 170 \, \text{mm}$

Tool interface: **GMN** standard

Motor: Asynchronous motor

Bearing arrangement: **GMN** high precision ball bearings

Lubrication: Oil-air lubrication

TECHNICA	AL DATA	\
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W_1	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C_rad	[N/µm]
Motor design		
Frequency max.	f_{max}	[Hz]
Nominal converter	voltage ¹⁾	[V]
Power		[kW]
Torque	M_{s1}	[Nm]
at speed		[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	M _{56-60%}	[Nm]
at speed	n	[rpm]

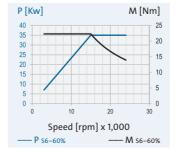
Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

¹⁾ Minimum required output voltage of the frequency converter

- + Standard
- o Option
- x on request

		100	n			_
HSX	HSX 170 - 30000/35			HSX 170 - 30000/21		
	170				170	
	30,000				30,000	
	55				55	
	D 32/53				D 32/53	
	53				53	
	111				111	
	203			203		
200 V	350 V	460 V		200 V	350 V	460 V
	1,000				1,000	
200	350	460		200	350	460
	32				19	
	20.4				20.2	
	15,000				9,000	
140	80	61		82	47	36
	35				21	
	22.3				22.3	
	15,000				9,000	
151	86	65		93	53	40

D500	MAC	MAC	MA
+	+	+	+
0	0	0	C
0	0	0	C
	-		
	Х		
	Х		
	+		
	+		
	0		
	х		
	0		


P [Kw]				M [Nm]	
40				25	
35	7			- 20	
25				- 15	
20 15				- 10	
10 /				- 5	
0 0	10	20	30	40 0	
Speed [rpm] x 1,000					
P s	6-60%		N	۸ s6-60%	

P [Kw]		N	۱ [Nm]		
25			25		
20	$\overline{}$		20		
15			15		
10			10		
5	_ \	<u> </u>	5		
0		20	0		
0 10	20	30	40		
Speed [rpm] x 1,000					
P s6-60%		M	56-60%		

MAC

MAC

_	

HSX 170 - 24000/35

170

24,000

63

130

231

350

32

20.4

15,000

80

35

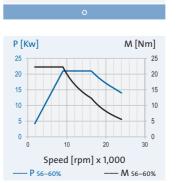
22.3

15,000

MAC

460

61


65

MAC

200

140

D500

HSX 170 - 24000/21

170

24,000

65

63

130

231

350

19

20.2

9,000

47

21

22.3

9,000

53

MAC

200

82

MAC

460

36

MAC

D500	MAC	MAC
+	+	+
0	0	0
0	0	0
	-	
	Х	
	Х	
	+	
	+	
	0	
	Х	
	О	

HSX 170 - 18000/34

170

18,000

70

68

201

325

350

29

25.2

11,000

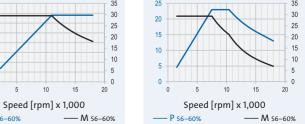
67

34

29.5

11,000

200


117

P [Kw]

460

51

D500	MAC	MAC
+	+	+
0	0	0
0	0	0
	-	
	Х	
	Х	
	+	
	+	
	0	
	Х	
	0	
P [Kw]		M [Nm]

M [Nm]

ПЭХ	170 - 3000	0/55	пэл	170 - 3000	70/21
	170		170		
	30,000			30,000	
	55		55		
	D 32/53		D 32/53		
	53		53		
	111			111	
	203			203	
200 V	350 V	460 V	200 V	350 V	460 V
	1,000			1,000	
200	350	460	200	350	460
	32			19	
	20.4			20.2	
	15,000			9,000	
140	80	61	82	47	36
	35			21	
	22.3			22.3	
	15,000			9,000	
151	86	65	93	53	40

P [Kw]		M [Nr	n]
25			25
20	$\overline{}$		20
15			15
10			10
5			5
0		1	0
0 10	20	30 40	
Spec	ed [rnm] x 1	.000	

GMN

High speed spindles for manual tool change

GMN High speed spindles for manual tool change

Round and plane running accuracy O.001 Measurement distance Test bar Size Measurem.dist. H5K 25 50 mm H5K 32 65 mm H5K 40 80 mm H5K 50 100 mm

HSK 80

125 mm 125 mm

HSK interface

HV-P

High-performance all-round spindles Grinding, milling and drilling applications with high rigidity and performance requirements

- · Housing Ø: 100 / 120 / 150 mm
- · Speed: max. 60,000 rpm
- · Power: S1 max. 33 kW
- · Motor: Asynchronous motor
- · Tool interface: HSK-C
- · Lubrication: Oil-air lubrication

HSP

High-performance all-round spindles Universal grinding, milling and drilling applications

- · Housing Ø: 100 / 120 / 150 / 170 / 230 mm
- · Speed: max. 51,000 rpm
- · Power: S1 max. 45 kW
- · Motor: Asynchronous motor
- · Tool interface: HSK-C
- · Lubrication: Oil-air lubrication

HSP...g

High-performance all-round spindles
Universal grinding, milling and drilling applications

- · Housing Ø: 100 / 120 / 150 / 170 / 230 mm
- · Speed: max. 30,000 rpm
- · Power: S1 max. 45 kW
- · Motor: Asynchronous motor
- · Tool interface: HSK-C
- · Lubrication: Permanent grease lubrication

TECHNICAL DATA

Tool interface:

HSK-C

Motor:

Asynchronous motor

Bearing arrangement:

GMN high precision ball bearings

Lubrication:

Oil-air lubrication

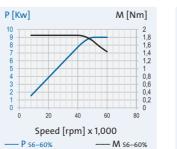
TECHNIC	AL DAT	A
Spindle housing (ÞΑ	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W_1	[mm]
Tool interface		
Flat contact face (Ø W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C_{rad}	[N/µm]
Motor design		
Frequency max.	f_{max}	[Hz]
Nominal converte	r voltage¹) [V]
Power	P_{s1}	[kW]
Torque	M _{S1}	[Nm]
at speed		[rpm]
at specu		20 2007
Current	I _{S1}	[A]
Current	I _{S1}	[A]
Current Power	I _{S1} P _{S6-60%}	[A] [kW]


Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

¹⁾ Minimum required output voltage of the frequency converter

- + Standard
- o Option
- x on request

mm]	
rpm]	
mm]	
mm]	
N/µm]	
N/µm]	
Hz]	
V]	
kW]	
Nm]	
rpm]	
Δ]	
kW]	
Nm]	
rpm] A]	
Δ]	


Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

HV-P	HV-P 100 - 60000/9			
	100			
	60,000			
	30			
	HSK-C 25			
	25			
	62			
	73			
200 V	350 V	460 V		200
	2,000			
200	350	460		200
	7.5			
	1.4			
	51,000			
42	24	18		42
	9			
	1.69			
	51,000			

28 21

GA	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	X	
	-	
	+	
	+	
	0	
	X	

	45,000			30,000		
40			45			
	HSK-C 32			HSK-C 40		
	32			40		
	76			80		
	85			74		
200 V	350 V	460 V	200 V	350 V	460 V	
	1,500			1,000		
200	350	460	200	350	460	
	7.5			7.5		
	2.39			3.41		
	30,000			21,000		
42	24	18	49	28	21	
	9			9		
	2.86			4.09		
	30,000			21,000		
49	28	21	53	30	23	

100

A	GA	GA	MAC	GA	GA
	+	+	+	+	+
)	0	0	Х	Х	х
)	0	0	0	0	0
	-			-	
	Х			Х	
	-			-	
	+			+	
	+			+	
	0			0	
	X			Х	
	0			0	

P [Kw]

Speed [rpm] x 1,000

	Spindle housing Ø		[mm]
	Speed max.	n _{max}	[rpm]
	Bearing Ø front	W_1	[mm]
	Tool interface		
	Flat contact face Ø	W	
	Static rigidity		
	axial	C _{ax}	[N/µm]
	radial	C_{rad}	[N/µm]
	Motor design		
	Frequency max.	f_{max}	[Hz]
	Nominal converter	voltage ¹⁾	[V]
	Power	P _{S1}	[kW]
	Torque	M _{S1}	[Nm]
	at speed	n	[rpm]
	Current	I _{S1}	[A]
	Power	P _{s6-60%}	[kW]
	Torque	M _{56-60%}	[Nm]
	at speed	n	[rpm]
	Current	I _{56-60%}	[A]

Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

1) Minimum required output voltage of the frequency converter

- + Standard
- o Option x on request

Tool interface:

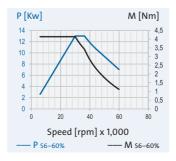
HSK-C

Motor:

Asynchronous motor

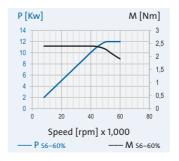
Bearing arrangement:
GMN high precision ball bearings

Lubrication:


Oil-air lubrication

TECHNICAL DATA			
Spindle housing Ø	А	[mm]	
Speed max.	n _{max}	[rpm]	
Bearing Ø front	W ₁	[mm]	
Tool interface			
Flat contact face Ø	W	[mm]	
Static rigidity			
axial	C _{ax}	[N/µm]	
radial	C_{rad}	[N/µm]	
Motor design			
Frequency max.	f _{max}	[Hz]	
Nominal converte	voltage ¹⁾	[V]	
Power	P _{s1}	[kW]	
Torque	M _{S1}	[Nm]	
at speed	n	[rpm]	
Current	I _{S1}	[A]	
Power	P _{s6-60%}	[kW]	
Torque	M _{56-60%}	[Nm]	
at speed	n	[rpm]	
Command		[A]	

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge


- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

MAC	GA	GA
+	+	+
X	X	X
0	0	0
	-	
	0	
	0	
	+	
	+	
	0	
	Х	
	0	

HV-P 120 - 60000/12				
120				
	60,000			
	30			
	HSK-C 25			
	25			
	69			
	97			
200 V	350 V	460 V		
	1,000			
200	350	460		
	10.5			
	1.97			
	51,000			
44	25	19		
	12			
	2.25			
	51,000			
51	29	22		

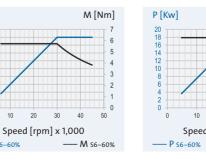
GA	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	0	
	0	
	+	
	+	
	0	
	х	
	0	

	120			120	
	45,000			30,000	
	45			55	
	HSK-C 40			HSK-C 50	
	40			50	
	91			99	
	125			145	
200 V	350 V	460 V	200 V	350 V	460 V
	1,500			1,000	
200	350	460	200	350	460
	15			15	
	4.77			5.97	
	30,000			24,000	
72	41	31	72	41	31
	18			18	
	5.73			7.16	
	30,000			24,000	
89	51	39	89	51	39

GA

GA

0

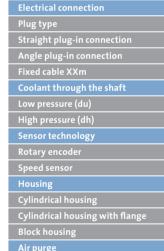

0

MAC

P [Kw]

MAC	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	0	
	0	
	+	
	+	
	0	
	х	
	0	

HV-P 120 - 30000/18



TECHNICAL DATA			
Spindle housing Ø	А	[mm]	
Speed max.	n _{max}	[rpm]	
Bearing Ø front	W ₁	[mm]	
Tool interface			
Flat contact face Ø	W	[mm]	
Static rigidity			
axial	C _{ax}	[N/µm]	
radial	C_{rad}	[N/µm]	
Motor design			
Frequency max.	f_{max}	[Hz]	
Nominal converte	voltage ¹	(V)	
Power	P _{S1}	[kW]	
Torque	M _{S1}	[Nm]	
at speed	n	[rpm]	
Current	I _{s1}	[A]	
Power	P _{S6-60%}	[kW]	
Torque	M _{S6-60%}	[Nm]	
at speed	n	[rpm]	
Current	I _{s6-60%}	[A]	

10000

				1)
		Ν	۱ [Nm]	o fı
			8	fı
	$\overline{}$		- 7 - 6	+
			- 5	0
			4	
			3 2	Х
′			1	
10	20	30	40	
Speed	[rpm] x	1,000		

---- M 56-60%

- 1) Minimum required output voltage of the frequency converter
- + Standard
- Option
- on request

TECHNICAL DATA

Flat contact face Ø W

Static rigidity

Tool interface: HSK-C

Motor:

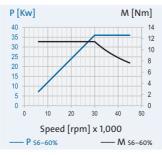
Asynchronous motor

Bearing arrangement:

GMN high precision ball bearings

Lubrication:
Oil-air lubrication

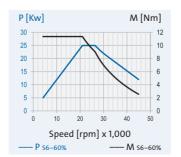
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C _{rad}	[N/µm]
Motor design		
Frequency max.	f_{max}	[Hz]
Nominal converter	voltage ¹⁾	[V]
Power		[kW]
Torque	M_{S1}	[Nm]
at speed		[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Tavavia	NA.	[Nm]
Torque	M _{S6-60%}	[14111]


TECHNICAL DATA

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

			_
	HV-P	150 - 4500	00/36
]		150	
i] i] i]		45,000	
]		45	
		HSK-C 40	
]		40	
ım]		91	
ım]		150	
	200 V	350 V	460 V
		1,500	
	200	350	460
		32	
]		10.2	
1]		30,000	
	152	87	66
]] i]		36	
]		11.5	
1]		30,000	
	166	95	72


D500	D500	MAC
+	+	+
0	0	0
0	0	0
	-	
	0	
	0	
	+	
	+	
	0	
	Х	
	0	

HV-P 150 - 45000/25			
	150		
	45,000		
	45		
	HSK-C 40		
	40		
	91		
150			
200 V	350 V	460 V	
	1,500		
200	350	460	
22			
	10		
	21,000		
105	60	46	
	25		
	11.4		
	21,000		

D500	MAC	MAC
+	+	+
0	0	0
0	0	0
	-	
	0	
	0	
	+	
	+	
	0	
	Х	
	0	

67 51

	21,000	
161	92	70
D500	MAC	MAC
+	+	+
0	0	0
0	0	0
	-	
	0	
	0	
	+	
	+	
	0	
	Х	
	0	

HV-P 150 - 30000/37

30,000 65

63

121

197

1,000

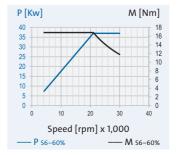
350

33

15 21,000

84

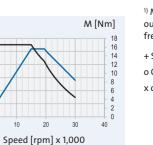
37


16.8

460

64

200


147

HV-P 150 - 30000/26			
150			
	30,000		
	65		
	HSK-C 63		
	63		
121			
197			
200 V	350 V	460 V	
	1,000		
200	350	460	
23			
14.6			
	15,000		
105	60	46	
	26		
	16.6		
15,000			

200	350	460	Nominal conve
	23		Power
	14.6		Torque
	15,000		at speed
105	60	46	Current
	26		Power
	16.6		Torque
	15,000		at speed
117	67	51	Current
			Electrical conn
500	MAC	MAC	Plug type
+	+	+	Straight plug-i
0	0	0	Angle plug-in
0	0	0	Fixed cable XX
			Coolant throug
	-		Low pressure (
	0		High pressure
			Sensor techno
	0		Rotary encode

10000

0

P [Kw]

---- P s6-60%

Electrical conne	ction	
Plug type		
Straight plug-in	connectio	
Angle plug-in co	nnection	
Fixed cable XXm	1	
Coolant through	the shaft	
Low pressure (d	u)	
High pressure (d	lh)	
Sensor technolo	gy	
Rotary encoder		
Speed sensor		
Housing		
Cylindrical hous	ing	
Cylindrical hous	ing with fla	ange
Block housing		
Air purgo		

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

0 - 51000/5

460

TECHNICAL DATA

Series: HSP Cylindrical housing: $\emptyset = 100 \, \text{mm}$

Tool interface: HSK-C

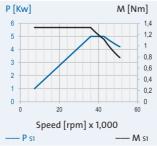
Motor:

Asynchronous motor

Bearing arrangement: GMN high precision ball bearings

Lubrication:

Oil-air lubrication

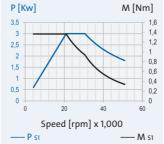

TECHNICAL DATA				
Spindle housing @	ÞΑ	[mm]		
Speed max.	n _{max}	[rpm]		
Bearing Ø front	W_1	[mm]		
Tool interface				
Flat contact face (Ø W	[mm]		
Static rigidity				
axial	C _{ax}	[N/µm]		
radial	C_rad	[N/µm]		
Motor design				
Frequency max.	f_{max}	[Hz]		
Nominal converte	r voltage¹) [V]		
Power		[kW]		
Torque	M_{S1}	[Nm]		
at speed		[rpm]		
Current	I _{S1}	[A]		
Power	P _{56-60%}	[kW]		
Torque	M _{56-60%}	[Nm]		
at speed	n	[rpm]		

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

	HSF	100 - 510
mm]		100
rpm]		51,000
mm]		30
		HSK-C 25
mm]		25
N/µm]		63
N/µm]		77
	200 V	350 V
Hz]		1,700
V]	200	350
kW]		5
Nm]		1.33
rpm]		36,000
Α]	26	15
kW]		6
Nm]		1.59
rpm]		36,000
A]	32	18

GA	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	Х	
	-	
	+	
	+	
	0	
	Х	
	0	



	1		
HSP 100 - 51000/3			
	100		
	51,000		
	30		
	HSK-C 25		
	25		
	63		
	77		
200 V	350 V	460 V	
	1,700		
200	350	460	
	3		
	1.36		
	21,000		
18	10	7,6	
	4		
	1.59		
	24,000		

GA	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	х	
	-	
	+	
	+	
	0	
	Х	
	0	

12

9.1

GA	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	х	
	-	
	+	
	+	
	0	
	X	
	0	

HSP 100 - 42000/5

100

42,000

35

HSK-C 32 32

69

81

1,400

350

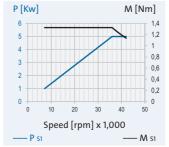
1.33

36,000

15

6

1.59


36,000

18

200

26

32

	00/3	100 - 4200	HSP
9		100	
9		42,000	
		35	
		HSK-C 32	
F		32	
9			
ā		69	
ı		81	
I	460 V	350 V	200 V
F		1,400	
ı	460	350	200
F		3	
		1.36	
		21,000	
(7.6	10	18
F		4	
1		1.59	
		24,000	

12

GA

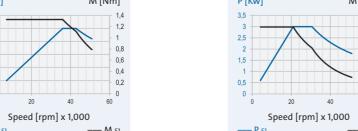
GA

P [Kw]

3,5 —

9.1

GA


M [Nm]

10000

Current		[A]
Electrical connec	tion	
Plug type		
Straight plug-in c	onnection	
Angle plug-in cor	nection	
Fixed cable XXm		
Coolant through	the shaft	
Low pressure (du)	
High pressure (dh	1)	
Sensor technolog	gy	
Rotary encoder		
Speed sensor		
Housing		
Cylindrical housi	ng	
Cylindrical housi	ng with fla	inge
Block housing		
Air purge		

51

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option x on request

2,5 -Speed [rpm] x 1,000

48

GA

GA

M [Nm]

200

MAC

P [Kw]

460

25

High speed spindles for manual tool change

GMN

Series: HSP

Cylindrical housing: $\emptyset = 120 \, \text{mm}$

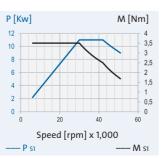
Tool interface: HSK-C

Motor: Asynchronous motor

Bearing arrangement: GMN high precision ball bearings

Lubrication: Oil-air lubrication

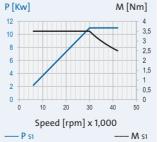
TECHNICAL DATA			
Spindle housing Ø		[mm]	
Speed max.	n _{max}	[rpm]	
Bearing Ø front	W ₁	[mm]	
Tool interface			
Flat contact face Ø	W	[mm]	
Static rigidity			
axial	C _{ax}	[N/µm]	
radial		[N/µm]	
Motor design			
Frequency max.	f _{max}	[Hz]	
Nominal converte	voltage ¹⁾	[V]	
Power		[kW]	
Torque	M _{S1}	[Nm]	
at speed		[rpm]	
Current	I _{s1}	[A]	
Power	P _{56-60%}	[kW]	
Torque	M _{56-60%}	[Nm]	
at speed	n	[rpm]	


Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

¹⁾ Minimum required	
output voltage of the	
frequency converter	

- + Standard
- o Option
- x on request

		100	n			_
HSP 120 - 51000/11				HSP	120 - 5100	0/6
	120			120		
	51,000				51,000	
	30				30	
	HSK-C 25				HSK-C 25	
	25				25	
	70				70	
	102			102		
200 V	350 V	460 V		200 V	350 V	460 V
	1,700				1,700	
200	350	460		200	350	460
	11			6		
	3.5				3.18	
	30,000				18,000	
63	36	27		30	17	13
	12				7	
	3.82				3.71	
	30,000				18,000	
67	38	29		35	20	15


MAC	GA	GA	GA	
+	+	+	+	
0	0	0	0	
0	0	0	0	
	-			
	0			
	Х			
	+			
	+			
	0			
	Х			
	0			

P [KW]		I	W [Nm]	
7			3,5	
6	$\overline{\lambda}$		3	
5	$/ \setminus$		2,5	
4			2	
3			1,5	
2			1	
1 -			0,5	
0			0	
0	20	40	60	
Speed [rpm] x 1,000				
P s1		-	M S1	

HSP 120 - 42000/11							
120							
42,000							
40							
	HSK-C 32						
	32						
	90						
	121						
200 V	350 V	460 V					
	1,400						
200	350	460					
	11						
	3.5						
	30,000						
63	36	27					
	12						
	3.82						
	30,000						
67	38	29					

MAC	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	0	
	Х	
	+	
	+	
	0	
	Х	
	0	

GA	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	0	
	X	
	+	
	+	
	0	
	Х	
	0	

HSP 120 - 42000/6

120

42,000

40

32

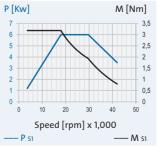
90

121

350

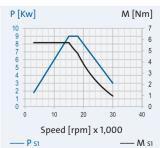
3.18

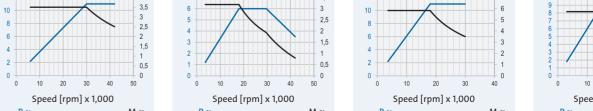
18.000


17

18,000

200


30


460

HSP 120 - 30000/11			HSP	120 - 3000	0/9
	120			120	
	30,000			30,000	
	45			45	
	HSK-C 40			HSK-C 40	
	40			40	
	98			98	
	131			131	
0 V	350 V	460 V	200 V	350 V	460
	1,500			1,500	
00	350	460	200	350	46
	11			9	
	5.84			5.73	
	18,000			15,000	
72	41	31	58	33	25
	13			11	
	6.9			7	
	18,000			15,000	

MAC	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	0	
	Х	
	+	
	+	
	0	
	Х	

1/0000

Series: HSP

Cylindrical housing: $\emptyset = 150 \,\mathrm{mm}$

Tool interface: HSK-C

Motor: Asynchronous motor

Bearing arrangement: GMN high precision ball bearings

Lubrication: Oil-air lubrication

	•					
TECHNICAL DATA						
Spindle housing Ø		[mm]				
Speed max.	n _{max}	[rpm]				
Bearing Ø front	W ₁	[mm]				
Tool interface						
Flat contact face Ø	W	[mm]				
Static rigidity						
axial	C _{ax}	[N/µm]				
radial	C_rad	[N/µm]				
Motor design						
Frequency max.	f _{max}	[Hz]				
Nominal converte	voltage ¹⁾	[V]				
Power	P _{S1}	[kW]				
Torque	M _{S1}	[Nm]				
at speed	n	[rpm]				
Current	I _{S1}	[A]				
Power	P _{56-60%}	[kW]				
Torque	M _{56-60%}	[Nm]				
at speed	n	[rpm]				

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

1) Minimum required output voltage of the frequency converter

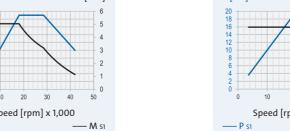
+ Standard

o Option

x on request

		100				_
HSP	HSP 150 - 42000/14			HSP	150 - 4200	0/9.5
	150			150		
	42,000				42,000	
	40				40	
	HSK-C 32				HSK-C 32	
	32				32	
	90				90	
	147				147	
200 V	350 V	460 V		200 V	350 V	460 V
	1,400				1,400	
200	350	460		200	350	460
	14				9.5	
	4.95				5.04	
	27,000				18,000	
86	49	37		47	27	21
	16				11	
	5.66				5.84	
	27.000				18,000	
102	58	44		54	31	24

GA

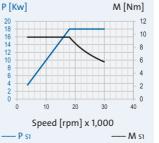

	MAC	M
	+	+
	0	(
	0	(
		-
		(
)
		+
		+
e		(
)
		(

P [Kw]				M	[Nm]
16					6
14			_		- 5
12					- 4
10 8	ш			\	3
6	/				- 2
4 2					- 1
0	ш	Ш			0
0	10	20	30	40	50
	Spee	d [rpr	n] x 1,	000	
D cr		- '	-		AA

P [Kw]				Μ	[Nm]
10			_		6
9 -	ж,	\wedge			- 5
7	_/				- 4
6 5 4 3 2	/				3
3 -	/				- 2
2 - /					- 1
0	Щ				0
0	10	20	30	40	50
Speed [rpm] x 1,000					
P s	1			-	– M s1

_	_
;	
60 V	
60	
21	
24	

MAC	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	0	
	Х	
	+	
	+	
	0	
	Х	
	0	



HSP	150 - 3000	0/18				
	150					
	30,000					
	55					
	HSK-C 50					
	50					
	111					
	177					
200 V	350 V	460 V				
	1,000					
200	350	460				
	18					
	9.55					
	18,000					
86	49	37				
	23					

12.2 18,000

MAC

05	40	70	40	50
MAC	GA	MAC	GA	GA
+	+	+	+	+
0	0	0	0	0
0	0	0	0	0
-			-	
0			0	
Х			Х	
+			+	
+			+	
0			0	
Х			х	
0			0	

P [Kw]	M [Nm]			
16	40			
	12			
14	- 10			
12 10	- 8			
8	6			
6	- 4			
4 2	- 2			
0	0			
0 10 20	30 40			
Speed [rpm] x 1,000				
P s1 M s1				

HSP 150 - 30000/14

150

30,000 55

HSK-C 50

50

111

177

350

14

9.9

13,500 36 16

13,500

200

	150			
	24,000			
65				
HSK-C 63				
	63			
	130			
	196			
200 V	350 V	460 V		
	800			
200	350	460		
	18			
	9.55			
	9.55 18,000			
86		37		
86	18,000	37		
86	18,000 49	37		

63

MAC

GA

MAC

HSP 150 - 24000/18

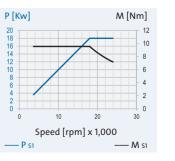
200	350	460
	14	
	12.2	
	11,000	
65	37	28
	17	
	14.8	
	11,000	
79	45	34
MAC	GA	GA
MAC +	GA +	GA +
+	+	+
+	+ 0	+ 0
+	+ 0	+ 0
+ 0	+ 0	+ 0
+ 0	+ 0 0	+ 0
+ 0	+ 0 0	+ 0
+ 0	+ 0 0	+ 0

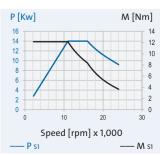
HSP 150 - 24000/14

150

24,000

65


ISK-C 63


63

130

196

800

HSP 170 - 24000/32

170

24,000

65

63

130

231

350

32

20.4

15,000

80

35

22.3

15,000

MAC

200

140

D500

460

61

65

MAC

HSP 170 - 18000/20

170

18,000

70

63

201

325

350

20

25.5

7,500

51

23

29.3

7,500

460

200

89

MAC

10000

GMN

High speed spindles for manual tool change

Series: HSP

Cylindrical housing: $Ø = 170 \, \text{mm}$

Tool interface: HSK-C

Motor: Asynchronous motor

Bearing arrangement: **GMN** high precision ball bearings

Lubrication: Oil-air lubrication

n			
	TECHNICA	AL DATA	\
	Spindle housing Ø	А	[mm]
	Speed max.	n _{max}	[rpm]
	Bearing Ø front	W_1	[mm]
	Tool interface		
	Flat contact face Ø	W	[mm]
	Static rigidity		
	axial	C _{ax}	[N/µm]
	radial	C _{rad}	[N/µm]
	Motor design		
	Frequency max.	f_{max}	[Hz]
	Nominal converter	voltage ¹⁾	[V]
	Power		[kW]
	Torque	M_{s1}	[Nm]
	at speed		[rpm]
	Current		[A]
	Power	P _{56-60%}	[kW]
	Torque	M _{56-60%}	[Nm]
	at speed	n	[rpm]

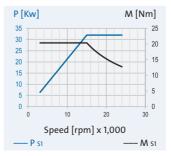
Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

¹⁾ Minimum required output voltage of the frequency converter

- + Standard
- o Option
- x on request

				_
HSP 170 - 3000	0/32	HSP	170 - 3000	0/19
170		170		
30,000		30,000		
55			55	
HSK-C 50			HSK-C 50	
50			50	
111			111	
203			203	
200 V 350 V	460 V	200 V	350 V	460 V
1,000			1,000	
200 350	460	200	350	460
32			19	
20.4			20.2	
15,000			9,000	
140 80	61	82	47	36
35			21	
22.3			22.3	
15,000			9,000	
151 86	65	93	53	40

MAC


D500	MAC	MAC
+	+	+
0	0	0
0	0	0
	-	
	0	
	х	
	+	
	+	
	0	
	Х	
	0	

[Kw]			Ν	۱ [Nm]
35				25
30 <u> </u>	/	\		- 20
20				- 15
15			$\overline{}$	- 10
10 /				- 5
0 0	10	20	30	0 40
J	Speed			10
P s1		. ,,	_	M s1

P [Kw]			N	l [Nm]
20	_	-		25
16	\wedge			20
12				15
10 /				10
8 6 4 2 0				5
				0
0	10	20	30	40
Speed [rpm] x 1,000				
P s1			_	— M 51

GA

MAC

	C		
P [Kw]			M [Nm]
20		_	25
16 14	$\overline{}$		20
12			15
10 /			10
8 6 4 2 0		_	5
			0
0	10	20	30
Speed [rpm] x 1,000			
P c1			M c1

0

HSP 170 - 24000/19

170

24,000

65

63

130

231

350

19

20.2

9,000

47

21

22.3

9,000

53

MAC

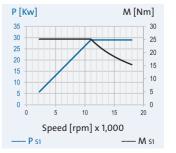
200

82

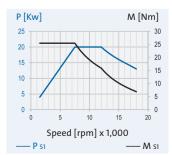
MAC

460

	18,000	
	70	
	HSK-C 63	
	63	
	201	
	325	
200 V	350 V	460 V
	600	
200	350	460
	29	
	25.2	
	11,000	
117	67	51
	34	
	29.5	
	11,000	
137	78	59


MAC

D500


HSP 170 - 18000/29

170

	-,	
102	58	44
D500	MAC	GA
+	+	+
0	0	0
0	0	0
	-	
	0	
	X	
	+	
	+	
	0	

0

HSP 230 - 15000/25

230

Series: HSP Cylindrical housing:

Tool interface: HSK-C

 $\emptyset = 230 \, \text{mm}$

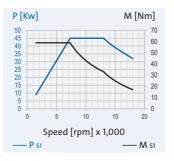
Motor:

Asynchronous motor

Bearing arrangement: GMN high precision ball bearings

Lubrication:

Oil-air lubrication

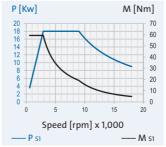

TECHNIC	AL DAT	A
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C _{rad}	[N/µm]
Motor design		
Frequency max.	f _{max}	[Hz]
Nominal converte	r voltage¹) [V]
Power		[kW]
Torque	M_{S1}	[Nm]
at speed		[rpm]
Current	I _{S1}	[A]
Power	P _{S6-60%}	[kW]
Torque	M _{S6-60%}	[Nm]
at speed	n	[rpm]

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

Tool interface		12				
Speed max. nmax [rpm] 18,000 Rearing Ø front W1 [mm] 70 70 Tool interface HSK-C 63 Flat contact face Ø W [mm] 63 Static rigidity axial Cax [N/µm] 196 radial Crad [N/µm] 375 Motor design 200 V 350 V Frequency max. fmax [Hz] 600 Nominal converter voltage ¹⁾ [V] 200 350 Power Ps1 [kW] 45 Torque Ms1 [Nm] 58.9 at speed n [rpm] 7,300 Current Is1 [A] 172 98 Power Ps6-60% [kW] 50 Torque Ms6-60% [Nm] 65.4 at speed n [rpm] 7,300 Current Is1 [A] 172 98 Frequency Roman Rom	TECHNIC	AL DA	ГА	HSP	230 - 1800	0/45
## Bearing Ø front W₁ [mm] 70 Tool interface	Spindle housing (ÞΑ	[mm]		230	
Tool interface	Speed max.	n _{max}	[rpm]		18,000	
Flat contact face Ø W [mm] 63 Static rigidity axial	Bearing Ø front	W_1	[mm]		70	
Static rigidity 196	Tool interface				HSK-C 63	
Torque N _{S1} N _S N _S	Flat contact face	ØΨ	[mm]		63	
Torque M _{S1} [N] Mover M _{S6-60%} [NM] Motor design 200 V 350 V Motor design 200 V Motor	Static rigidity					
Motor design 200 V 350 V	axial	C _{ax}	[N/µm]		196	
Frequency max. f _{max} [Hz] 600 Nominal converter voltage ¹⁾ [V] 200 350 Power P _{S1} [kW] 45 Torque M _{S1} [Nm] 58.9 at speed n [rpm] 7,300 Current I _{S1} [A] 172 98 Power P _{S6-60%} [kW] 50 Torque M _{S6-60%} [Nm] 65.4 at speed n [rpm] 7,300	radial	C_{rad}	[N/µm]		375	
Nominal converter voltage ¹⁾ [V] 200 350 Power	Motor design			200 V	350 V	
Power P _{S1} [kW] 45 Torque M _{S1} [Nm] 58.9 at speed n [rpm] 7,300 Current I _{S1} [A] 172 98 Power P _{S6-60%} [kW] 50 Torque M _{S6-60%} [Nm] 65.4 at speed n [rpm] 7,300	Frequency max.	f_{max}	[Hz]		600	
Torque M _{S1} [Nm] 58.9 at speed n [rpm] 7,300 Current I _{S1} [A] 172 98 Power P _{S6-60%} [kW] 50 Torque M _{S6-60%} [Nm] 65.4 at speed n [rpm] 7,300	Nominal converte	er voltage	e ¹⁾ [V]	200	350	
at speed n [rpm] 7,300 Current I _{S1} [A] 172 98 Power P _{S6-60%} [kW] 50 Torque M _{S6-60%} [Nm] 65.4 at speed n [rpm] 7,300	Power	P_{S1}	[kW]		45	
Current I _{S1} [A] 172 98 Power P _{S6-60%} [kW] 50 Torque M _{S6-60%} [Nm] 65.4 at speed n [rpm] 7,300	Torque	M_{S1}	[Nm]		58.9	
Power P _{56-60%} [kW] 50 Torque M _{56-60%} [Nm] 65.4 at speed n [rpm] 7,300	at speed	n	[rpm]		7,300	
Torque M _{56-60%} [Nm] 65.4 at speed n [rpm] 7,300	Current	I _{S1}	[A]	172	98	
at speed n [rpm] 7,300	Power	P _{56-60%}	[kW]		50	
	Torque	M _{S6-609}	[Nm]		65.4	
Current I _{56-60%} [A] 189 108	at speed	n	[rpm]		7,300	
	Current	I _{S6-60%}	[A]	189	108	

-	D500	-
-	+	-
-	0	-
+	0	-
	-	
	0	
	Х	
	+	
	+	
	0	
	Х	



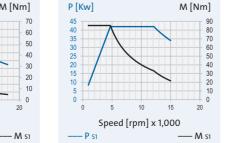
		1						
F	ISP	230 - 1800	0/18					
		230						
		18,000						
	70							
		HSK-C 63						
		63						
		196						
		375						
200	V	350 V	-					
		600						
200)	350	-					
		18						
		59.3						
		2,900						
100		57	-					
		20						
		65.9						
		2,900						

112

D500	MAC	-
+	+	-
0	0	-
0	0	-
	-	
	0	
	Х	
	+	
	+	
	0	
	х	
	0	

64

	15,000			15,000	
90			90		
	HSK-C 80			HSK-C 80	
	80			80	
	461			461	
	483			483	
200 V	350 V	-	200 V	350 V	_
	500			500	
200	350	-	200	350	_
	42			25	
	85.3			85.3	
	4,700			2,800	
168	96	-	121	69	_
	47			28	
	95.5			95.5	
	4,700			2,800	
187	107	-	135	77	_


HSP 230 - 15000/42

230

-	D500	-	D500	MAC	-
-	+	-	+	+	-
-	0	-	0	0	-
+	0	-	0	0	-
	-			-	
	0			0	
	х			Х	
	+			+	
	+			+	
	0			0	
	X			х	
	0			0	

P [Kw]

Speed [rpm] x 1,000

TECHNICAL DATA				
Spindle housing Ø	А			
Speed max.	n _{max}	[rpm]		
Bearing Ø front	W ₁	[mm]		
Tool interface				
Flat contact face Ø	v	[mm]		
Static rigidity				
axial	C _{ax}	[N/µm]		
radial	C _{rad}	[N/µm]		
Motor design				
Frequency max.	f _{max}	[Hz]		
Nominal converte	r voltage¹) [V]		
Power	P _{S1}	[kW]		
Torque	M _{S1}	[Nm]		
at speed	n	[rpm]		
Current	I _{S1}	[A]		
Power	P _{S6-60%}	[kW]		
Torque	M _{56-60%}	[Nm]		
at speed	n	[rpm]		
Current	I _{56-60%}	[A]		

1/0000

Electrical connection	
Plug type	
Straight plug-in connection	
Angle plug-in connection	
Fixed cable XXm	
Coolant through the shaft	
Low pressure (du)	
High pressure (dh)	
Sensor technology	
Rotary encoder	
Speed sensor	
Housing	
Cylindrical housing	
Cylindrical housing with flange	
Block housing	
Air purge	

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

30,000 30

25

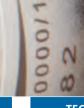
63

77

350

21,000

24,000


200

Tool interface:

HSK-C

Motor:

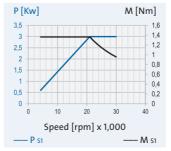
Asynchronous motor

Bearing arrangement:

GMN high precision ball bearings

Lubrication:

Permanent grease lubrication


TECHNICAL DATA					
Spindle housing Ø	A	[mm]			
Speed max.	n _{max}	[rpm]			
Bearing Ø front	W_1	[mm]			
Tool interface					
Flat contact face Ø	W	[mm]			
Static rigidity					
axial	C _{ax}	[N/µm]			
radial	C_rad	[N/µm]			
Motor design					
Frequency max.	f_{max}	[Hz]			
Nominal converter	voltage ¹⁾	[V]			
Power		[kW]			
Torque	M_{S1}	[Nm]			
at speed	n	[rpm]			
Current	I _{S1}	[A]			
Power	P _{S6-60%}	[kW]			
Torque	M _{56-60%}	[Nm]			
at speed	n	[rpm]			

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

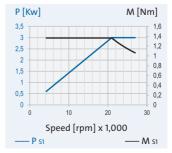
- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

]		
]		
]]]		
]		
m]		
m] m]		
]		
1		
]		
1		

	GA	GA
	+	+
	0	0
	0	0
		-
		х
		-
		+
		+
		0
		х
		+

	100			100
	27,000			21,000
	35			45
	HSK-C 32			HSK-C 40
	32			40
	69			91
	81			80
200 V	350 V	-	200 V	350 V
	900			700
200	350	-	200	350
	3			3
	1.36			2.39
	21,000			12,000
18	10	-	18	10
	4			4.5
	1.59			2.86
	24,000			15,000
21	12	-	21	12

GA


P [Kw]

0

Speed [rpm] x 1,000

M [Nm]

GA	GA	-
+	+	-
0	0	-
0	0	-
	-	
	Х	
	-	
	+	
	+	
	0	
	х	
	+	

	00/3	100g - 210	пэг
Spindl		100	
Speed		21,000	
Bearin		45	
Tool in		HSK-C 40	
Flat co		40	
Static			
axial		91	
radial		80	
Motor	-	350 V	200 V
Freque		700	
Nomin	-	350	200
Power		3	
Torque		2.39	
at sp		12,000	
Curren	-	10	18
Power		4.5	
Torque		2.86	
at sp		15,000	
Curren	-	12	21

	Electrical connection
	Plug type
	Straight plug-in connection
	Angle plug-in connection
	Fixed cable XXm
	Coolant through the shaft
	Low pressure (du)
	High pressure (dh)
	Sensor technology
	Rotary encoder
	Speed sensor
	Housing
	Cylindrical housing
	Cylindrical housing with flange
	Block housing
	Air purge

- 1) Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

30,000 30

25

70

102

350

6

3.18 18,000

18,000 20 460

Tool interface:

HSK-C

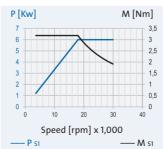
Motor:

Asynchronous motor

Bearing arrangement:

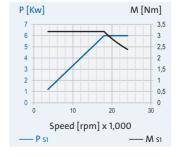
GMN high precision ball bearings

Lubrication:


Permanent grease lubrication

TECHNIC	AL DATA	4
Spindle housing Ø	Α	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C_rad	[N/µm]
Motor design		
Frequency max.	f_{max}	[Hz]
Nominal converter	r voltage ¹⁾	[V]
Power		[kW]
Torque	M _{S1}	[Nm]
at speed	n	[rpm]
Current	I _{s1}	[A]
Power	P _{56-60%}	[kW]
Torque	M _{56-60%}	[Nm]
at speed	n	[rpm]
C		FA1

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge


- ¹⁾ Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

-	GA	GA
-	+	+
-	0	0
-	0	0
	-	
	Х	
	-	
	+	
	+	
	0	
	Х	

	120		
	24,000		
	40		
	HSK-C 32		
	32		
	90		
	121		
-	350 V	460 V	200 V
	800		
-	350	460	200
	6		
	3.18		
	18,000		
-	17	13	70
	7		
	3.71		
	18,000		
-	20	15	84

-	GA	GA
-	+	+
-	0	0
-	0	0
	-	
	Х	
	-	
	+	
	+	
	0	
	х	
	+	

HSP	120g - 2100	00/9
120		
	21,000	
	45	
	HSK-C 40	
	40	
	98	
	131	
200 V	350 V	460 V
	1,050	
200	350	460
	9	
	5.73	
	15,000	
70	40	30
	13	
	6.9	
	18,000	
84	48	37

			Electrical connection
MAC	GA	GA	Plug type
+	+	+	Straight plug-in conn
0	0	0	Angle plug-in connec
0	0	0	Fixed cable XXm
			Coolant through the
	-		Low pressure (du)
	х		High pressure (dh)
			Sensor technology
	-		Rotary encoder
	+		Speed sensor
			Housing
	+		Cylindrical housing
	0		Cylindrical housing w
	х		Block housing
	+		Air purge
- 5:- 1			1) Minimum required

Speed [rpm] x 1,000

output voltage of the frequency converter + Standard

63

o Option x on request

24,000 40

32

90

147

350

9.5

5.04 18,000

27

11

18,000

200

47

460

21

Tool interface:

HSK-C

Motor:

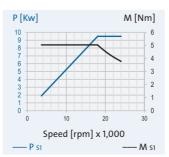
Asynchronous motor

Bearing arrangement:

GMN high precision ball bearings

Lubrication:

Permanent grease lubrication


TECHNICA	AL DAIA	١.
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C _{rad}	[N/µm]
Motor design		
Frequency max.	f _{max}	[Hz]
Nominal converter	voltage ¹⁾	[V]
Power	P _{S1}	[kW]
Torque	M _{S1}	[Nm]
at speed	n	[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	M _{56-60%}	[Nm]
at speed	n	[rpm]
Current	1	[٨]

Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

¹⁾ Minimum required output voltage of the frequency converter

- + Standard
- o Option
- x on request

MAC	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	Х	
	Х	
	+	
	+	
	0	
	X	
	+	

MAC	GA	GA
+	+	+
0	0	0
0	0	0
	-	
	х	
	х	
	+	
	+	
	0	
	X	
	+	

150

18,000

55

50

111

177

350

14

9.9

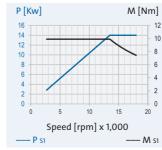
13,500

36

16

11.3 13,500

40


200

460

MAC

P [Kw]

Speed [rpm] x 1,000

TECH	0/14	HSP 150g - 15000/14		
Spindle hou		150		
Speed max.		15,000		
Bearing Ø fr		65		
Tool interfa		HSK-C 63		
Flat contact		63		
Static rigidit				
axial		130		
radial		196		
Motor desig	460 V	350 V	200 V	
Frequency n		500		
Nominal cor	460	350	200	
Power		14		
Torque		12.2		
at speed		11,000		
Current	28	37	65	
Power		17		
Torque		14.8		
at speed		11,000		
	2.4	4.5	70	

		Electrical connection
GA	GA	Plug type
+	+	Straight plug-in connection
0	0	Angle plug-in connection
0	0	Fixed cable XXm
		Coolant through the shaft
-		Low pressure (du)
x		High pressure (dh)
		Sensor technology
x		Rotary encoder
+		Speed sensor
		Housing
+		Cylindrical housing
0		Cylindrical housing with flange
X		Block housing
+		Air purge

- ¹⁾ Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

18,000

55

50

111

203

350

19

20.2

9,000

47

22

10,000

200

82

460

36

40

170

15,000

65

63

130

231

350

19

20.2

9,000

47

22

21

10,000

200

82

460

36

170

12,000

70

63

201

325

350

20

25.5

7,500

51

23

29.3

7,500

58

MAC

0

200

D500

460

39

44

GA

Tool interface:

HSK-C

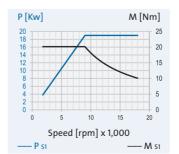
Motor:

Asynchronous motor

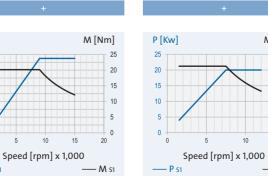
Bearing arrangement:

GMN high precision ball bearings

Lubrication:


Permanent grease lubrication

TECHNIC	AL DATA	`
Spindle housing Ø	Α	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C _{rad}	[N/µm]
Motor design		
Frequency max.	f_{max}	[Hz]
Nominal converter	voltage ¹⁾	[V]
Power	P _{S1}	[kW]
Torque	M_{S1}	[Nm]
at speed	n	[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	M _{56-60%}	[Nm]
at speed	n	[rpm]


Electrical connection
Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge
F 9 -

- ¹⁾ Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

MAC MAC GA + + + + 0 0 0 0 0 0			
+ + + + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MAC	MAC	GA
o o o o o o o o o o o o o o o o o o o	+	+	+
- x x + + o x	0	0	0
x + + o x	0	0	0
x + + o x			
x + + o x		-	
+ o x		х	
+ o x			
+ o x		х	
o x		+	
o x			
х		+	
		0	
+		Х	
		+	

MAC	MAC	GA
+	+	+
0	0	0
0	0	0
	-	
	Х	
	Х	
	+	
	+	
	0	
	Х	
	+	
P [Kw]		M [Nm]

TECHNIC	AL DATA	4
Spindle housing Ø	А	[mm]
Speed max.	n _{max}	[rpm]
Bearing Ø front	W ₁	[mm]
Tool interface		
Flat contact face Ø	W	[mm]
Static rigidity		
axial	C _{ax}	[N/µm]
radial	C_{rad}	[N/µm]
Motor design		
Frequency max.	f_{max}	[Hz]
Nominal converter	voltage ¹⁾	[V]
Power	P _{s1}	[kW]
Torque	M_{S1}	[Nm]
at speed	n	[rpm]
Current	I _{S1}	[A]
Power	P _{56-60%}	[kW]
Torque	M _{56-60%}	[Nm]
at speed	n	[rpm]
Current	I _{s6-60%}	[A]

Plug type
Straight plug-in connection
Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

- ¹⁾ Minimum required output voltage of the frequency converter
- + Standard
- o Option
- x on request

Tool interface:

HSK-C

Motor:

Asynchronous motor

Bearing arrangement:

GMN high precision ball bearings

Lubrication:

Permanent grease lubrication

	-							
TECHNICAL DATA								
Spindle housing (ÞΑ	[mm]						
Speed max.	n _{max}	[rpm]						
Bearing Ø front	W ₁	[mm]						
Tool interface								
Flat contact face	ØW	[mm]						
Static rigidity								
axial	C _{ax}	[N/µm]						
radial	C_rad	[N/µm]						
Motor design								
Frequency max.	f_{max}	[Hz]						
Nominal converte		¹⁾ [V]						
Power	P _{S1}	[kW]						
Torque	M _{S1}	[Nm]						
at speed		[rpm]						
Current	I ₅₁	[A]						
Power	P _{56-60%}	[kW]						
Torque	M _{56-60%}	[Nm]						
at speed	n	[rpm]						
Current		[A]						

1) Minimum required

output voltage of the

frequency converter

+ Standard

x on request

o Option

al connection						
pe	D500	MAC	GA			
t plug-in connection	+	+	+			
olug-in connection	0	0	0			
able XXm	0	0	0			
t through the shaft						
essure (du)		-				
essure (dh)	Х					
technology						
encoder		Х				
sensor		+				
g						
ical housing		+				
ical housing with flange		0				
ousing		X				
ge		+				

P [Kw]	1	M [Nm]		
20 18 16 14 12 10 8 6 4 2 0			7/ - 6 - 5 - 4 - 3 - 2	
0 0	5	10	15	
Sp	eed [rpr	n] x 1,000		
D				

230

12,000 70

63

196

375

350

18

59.3 2,900

57

20

65.9 2,900

64

200

100

112

460

43

49

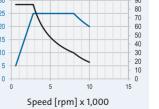
	10,000	
	90	
	HSK-C 80	
	80	
	461	
	483	
200 V	350 V	460 V
	333	
200	350	460
	25	
	85.3	
	2,800	
121	69	53
	28	
	95.5	
	2,800	
187	107	81

230

187	107	81
D500	MAC	MAC
+	+	+
0	0	0
0	0	0
	-	
	Х	
	X	
	+	
	+	
	0	
	X	
	+	

P [Kw]			M [Nm
30			
25		$\overline{}$	
20		\rightarrow	
15			
10			
5			
0			ш,
0	5	10	15
Sp	eed [rpr	n] x 1,00	0
P s1			M s

	TECHNIC	AL DATA	V
Spindle	e housing Ø	А	[mm]
Speed	max.	n _{max}	[rpm]
Bearin	g Ø front	W_1	
Tool in	terface		
Flat co	ntact face Ø	W	[mm]
Static ı	rigidity		
axial		C _{ax}	[N/µm]
radial		C_{rad}	[N/µm]
Motor	design		
Freque	ncy max.	f_{max}	[Hz]
Nomin	al converter	voltage ¹⁾	[V]
Power		P _{s1}	[kW]
Torque		M_{S1}	[Nm]
at sp	eed	n	[rpm]
Curren	t	I _{S1}	[A]
Power		P _{S6-60%}	[kW]
Torque		M _{S6-60%}	[Nm]
at sp	eed	n	[rpm]
Curren	t	I _{s6-60%}	[A]


Angle plug-in connection
Fixed cable XXm
Coolant through the shaft
Low pressure (du)
High pressure (dh)
Sensor technology
Rotary encoder
Speed sensor
Housing
Cylindrical housing
Cylindrical housing with flange
Block housing
Air purge

Straight plug-in connection

1) Minimum required output voltage of the frequency converter

+ Standard

o Option x on request

www.bergab.ru

Берг АБ

bergab@ya.ru

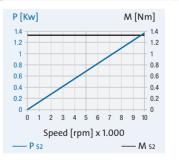
тел. (495) 228-06-21,

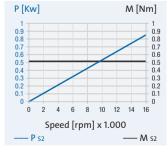
GMN

High speed spindles for manual tool change

GMN dressing spindles

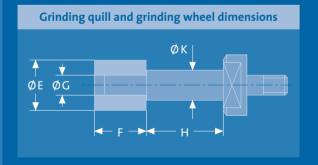
GMN offers highly effective dressing spindles for precisely shaping and dressing grinding disks.


GMN series TSE dressing spindles are equipped with a permanent grease-lubricated bearing that ensures great running smoothness and offers outstanding rigidity.


With a choice of horizontal or vertical installation orientation as well as optional left or right spindle shaft rotation, GMN dressing spindles can be compactly integrated into existing machine systems.

TECHNICAL DATA	TSE 80 - 10000/1.37	TSE 80cg - 16000/0.85
Spindle housing Ø A [mm]	80	80
Speed max. [rpm]	10,000	16,000
Bearing Ø front W ₁ [mm]	35	35
Tool interface		
Flat contact face Ø W [mm]	71.8	71.8
Centering diameter	D40h2	D40h2
Static rigidity		
axial C _{ax} [N/µm]	88	89
radial C _{rad} [N/μm]	35	40
Motor design	230 V	230 V
Frequency max. [Hz]	334	533
Converter voltage [V]	230	230
Power P _{S2} [kW]	1.37	0.85
Torque M ₅₂ [Nm]	1.31	0.51
at speed n [rpm]	10,000	16,000

GMN A/E sensor


GMN dressing spindles equipped with an optional acoustic emission sensor improve processing quality and extend the service life of grinding disks.

- · Improved tool usage-period
- · Reduced maintenance overhead
- · High processing accuracy

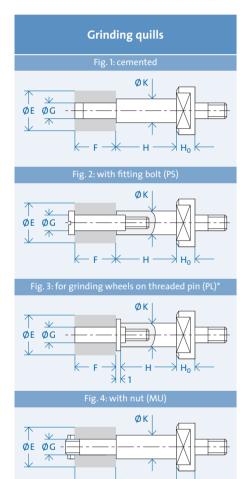
www.bergab.ru Берг АБ bergab@ya.ru тел. (495) 228-06-21, факс (495) 223-30-71

GMN High speed spindles for manual tool change Grinding quills

Spindle/grinding quill selection for GMN standard tool interface

GMN spindle						Cutting	speed	for spir	ıdle spe	ed [m/s]				
HS 80c - 180000/		56												
HS 80c - 150000/		47												
HSX 80 - 120000/		38												
HS 80c - 120000/		38												
HSX 100 - 105000/			44	55	71									
HS 80c - 90000/			38	47	61									
HV-X 100 - 105000/			44	55	71									
HSX 100 - 90000/			38	47	61	75								
HV-X 100 - 90000/			38	47	61	75								
HSX 100 - 75000/				39	51	63	79							
HV-X 100 - 75000/				39	51	63	79							
HV-X 120 - 75000/				39	51	63	79							
HSX 100 - 60000/					41	50	63	79						
HSX 120 - 60000/					41	50	63	79						
HV-X 100 - 60000/					41	50	63	79						
HV-X 120 - 60000/					41	50	63	79						
HSX 120 - 51000/					.,	43	53	67	85					
HV-X 100 - 45000/						37	47	59	75					
HSX 120 - 42000/						,	44	55	70	88				
HSX 150 - 42000/							44	55	70	88				
HV-X 120 - 45000/							47	59	75	94				
HV-X 150 - 45000/							47	59	75	94				
HV-X 100 - 30000/							.,	39	50	63	79			
HSX 120 - 30000/								39	50	63	79			
HV-X 120 - 30000/								39	50	63	79			
HSX 150 - 30000/								39	50	63	79	99		
HSX 170 - 30000/								39	50	63	79	99		
HV-X 150 - 30000/								33	50	63	79	99	125	
HSX 150 - 24000/									40	50	63	79	101	
HSX 170 - 24000/									40	50	63	79	101	
HSX 150 - 18000/									30	38	47	59	75	
HSX 170 - 18000/									30	38	47	59	75	9
1134 170 - 186667										30	77))	, , ,	,
	E	6	8	10	13	16	20	25	32	40	50	63	80	10
Grinding wheel dimensions [mm]	F	8	10	10	13	16	20	25	25	32	40	40	40	4
	G	2	3	3	4	6	8	10	13	16	20	25	32	3
Grinding disk fixation		KI	KI	KI	PS/PL	PS/PL	PS/PL	PS/PL	PS/PL	MU	MU	MU	MU	N
see illustrations page 74		1	1	1	2+3	2+3	2+3	2+3	2+3	4	4	4	4	4
Grinding mandrel diameter [mm]	к	4	5	6	8	10	13	16	20	25	32	40	50	5
Grinding mandrel length H [mm]							Grinding o	quill rigid	ity [N/μm]				
16		1.8	4.7	9.8										
20		1	2.4	5	15.8	38.7								
25			1.2	2.6	8.1	19.8	56.5							
32					3.9	9.4	27	61.9	151					
40						4.8	13.8	31.7	77.3	189				
50							7.1	16.2	39.6	96.6	259			
63							3.5	8.1	19.8	48.3	130	317	773	12
80										23.6	63.3	155	378	5
100											32.4	79.2	193	3
125												40.5	99	1
160													47.2	74

GMN


bergab@ya.ru Берг АБ тел. (495) 228-06-21, факс (495) 223-30-71 <u>www.bergab.ru</u>

GMN Grinding quills for GMN standard tool interface

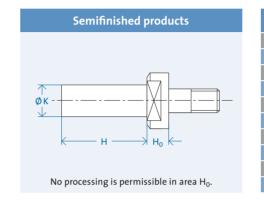
Grinding quills

GMN

GMN produces grinding quills having high round and flat contact face accuracy for all available GMN standard tool interfaces.

* Fig. 3: Threaded pin not in delivery complement

- · GMN quills for interfaces D14/23 ... D36/68; Right-hand direction of rotation available at short notice
- · Other dimensions and left-hand direction of rotation on request

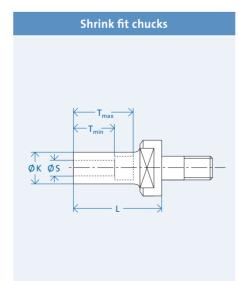

Interface	K [mm]	H [mm]	Grinding wheel E x F [mm]	G [mm]	Grinding wheel fixation	H ₀ [mm]
	6	20	10 x 10	4	KI	
D 14/23	10	25	16 x 16	6	PS/PL	8
	16	32	25 x 25	10	PS/PL	
	10	25	16 x 16	6	PS/PL	
D 16/28	13	32	20 x 20	8	PS/PL	10
	16	40	25 x 25	10	PS/PL	
	13	32	20 x 20	8	PS/PL	
D 22/38	20	40	32 x 25	13	PS/PL	12
	25	50	40 x 32	16	MU	
	16	40	25 x 25	10	PS/PL	
D 28/43	20	50	32 x 25	13	PS/PL	12
	32	63	50 x 40	20	MU	
	20	50	32 x 25	13	PS/PL	
D 32/53	32	63	50 x 40	20	MU	12
	40	80	63 x 40	25	MU	
	25	50	40 x 32	16	MU	
D 36/63	32	63	50 x 40	20	MU	15
	50	100	80 x 40	32	MU	
	32	63	50 x 40	20	MU	
D 36/68	40	80	63 x 40	25	MU	15
	56	125	100 x 40	36	MU	

Fitting hole for fig. 2 and 3								
	d ₁	M	L5	L6				
	4	M3	5	8				
Ø d ₁ H5	6	M5	7	11				
	8	M6	9	12				
	10	M8	12	14				
\leftarrow L ₅ \rightarrow L ₆ \rightarrow	13	M12	13	17				

[quill ø K] x [quill length H] - [grinding wheel ø G] x [grinding wheel width F] [interface] [quill fixation] Example: Grinding quill 16 x 40 - 10 x 25 D16/28 PS

Semifinished products

GMN semifinished products allow individual adaptation of the tool receiver for any type of connection.


- GMN semifinished products for interfaces D08/14 ... D36/63; Right-hand direction of rotation available at short notice
- · Other dimensions and left-hand direction of rotation on request

Interface	K [mm]	H [mm]	GMN semifinished products
D 08/14	14	70	
D 09/16	16	84	
D 10/18	18	90	The same of the sa
D 14/23	23	135	
D 16/28	28	229	. 100
D 16/33	33	180	All terms and the
D 22/38	38	174	
D 28/43	43	240	
D 32/53	53	235	
D 36/63	63	150	

www.gmn.de

Shrink fit chucks

GMN shrink fit chucks have substantially more clamping force than hydro-expansion or collet chucks and they achieve maximum smooth running at the highest speeds as a consequence of the best possible roundness accuracy.

- GMN shrink fit chucks for interfaces D04/08 ... D16/28 and U07/10 ... U16/23; Right-hand direction of rotation available at short notice
- · Other dimensions and left-hand direction of rotation on request

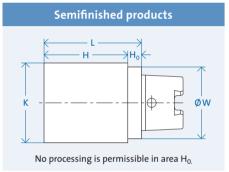
Interfa	ace	S [mm]	T _{min} [mm]	T _{max} [mm]	K [mm]	L [mm]
D 04/08	-	3	10	11	7,5	14
D 06/12	U 07/10	3	10	11	7,5	14
D 08/14	-	3	10	15	7,5	24
D 09/16	U 09/16	3	10	15	7,5	24
D 10/18	-	3	10	15	7,5	24
D 10/18	U 12/18	4	13	21	10	25
D 10/18	U 12/18	5	16	26	11	30
D 10/18	U 12/18	6	19	26	12	30
D 14/23	U 16/23	3	10	15	7,5	24
D 14/23	U 16/23	4	13	21	10	25
D 14/23	U 16/23	5	16	23	11	27
D 14/23	U 16/23	6	19	26	12	30
D 16/28	-	3	10	15	7,5	24
D 16/28	-	4	13	21	10	25
D 16/28	-	5	16	23	11	27
D 16/28	-	6	19	26	12	30

Ordering designation: "Shrink fit chucks" [chucking ϕ S] x [max. chucking depth Tmax] / [chuck length L] [interface] Example: Shrink fit chucks 6 x 26 / 30 D10/18

<u>www.bergab.ru</u> Берг АБ bergab@ya.ru тел. (495) 228-06-21, факс (495) 223-30-71

GMN Grinding quills for HSK interface

Grinding quills


GMN

GMN produces grinding quills having high round and flat contact face accuracy for all available HSK-C interfaces.

- GMN grinding quills for interfaces HSK-C25 ... HSK-C100 per DIN 69893-1 are available at short notice
- · Other dimensions are available on request

Semifinished products

GMN semifinished products allow individual adaptation of the tool receiver for any type of connection.

- GMN semifinished products for interfaces HSK-C25 ... HSK-C100 per DIN 69893-1 are available at short notice
- · Other dimensions are available on request

Interface	W [mm]	K [mm]	H [mm]	L [mm]	H ₀ [mm]	Wt.[kg]
HSK-C25	25	30	90	100	10	1
HSK-C32	32	41	139	150	11	1,50
HSK-C40	40	51	169	180	11	2,81
HSK-C50	50	64	186	200	14	4,92
HSK-C50	50	64	76	90	14	2,15
HSK-C63	63	81	186	200	14	7,90
HSK-C63	63	81	86	100	14	3,89
HSK-C80	80	101	193	210	17	12,90
HSK-C100	100	124	208	225	17	21,70

Ordering designation: "Semifinished product" [shaft \emptyset K] x [shaft length H] [interface] Example: Semifinished product 81 x 186 HSK-C63

Shrink fit chucks

GMN shrink fit chucks have substantially more clamping force than hydro-expansion or collet chucks. They achieve maximum smooth running at the highest speeds as a consequence of the best possible roundness accuracy.

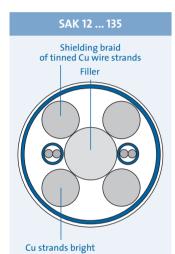
Shrink fit chucks							
ØK ₂ ØK ₁ ØS T _{min} T _{max}							

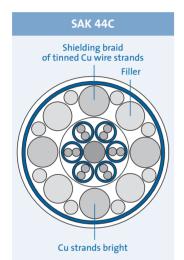
- GMN shrink fit chucks for interfaces HSK-C25 ... HSK-C40 per DIN 69893-1 are available at short notice
- · Other dimensions are available on request

Interface	S [mm]	T _{min} [mm]	T _{max} [mm]	K ₁ [mm]	K ₂ [mm]	L ₁ [mm]	L [mm]	W [mm]
HSK-C25	3	10	27	7,5	18	17	35	25
HSK-C25	4	13	24	10	18	17	35	25
HSK-C25	5	16	25	11	18	17	35	25
HSK-C25	6	19	25	12	18	17	35	25
HSK-C32	3	10	30	7,5	20	22	40	32
HSK-C32	4	13	24	10	20	22	40	32
HSK-C32	5	16	26	11	26	22	40	32
HSK-C32	6	19	28	12	26	22	40	32
HSK-C40	3	10	30	7,5	26	22	40	40
HSK-C40	4	13	30	10	26	22	40	40
HSK-C40	5	16	26	11	26	22	40	40
HSK-C40	6	19	28	12	26	22	40	40

Ordering designation: "Shrink fit chucks" [chucking \emptyset S] x [max. chucking depth Tmax] / [chuck length L] [interface] Example: Shrink fit chucks 6 x 28 / 40 HSK-C32

GMN
High speed spindles
for manual tool change
Accessories


www.gmn.de



Spindle/converter connection

GMN

For the spindle/converter connection, GMN supplies UL/CSA approved electrical cables suitable for use in drag chains.

Cable type SAK 12 ... 135

Cable type	Nom. current [A]	Energy transfer Copper strands shielded	Signal transfer Control pair shielded	Jacket Insulation TPE/PUR	Bending radius min. static	Bending radius min. dynamic
SAK 12	12	4 x 0,.5 mm ²	2	AD 12,5 mm	5 x AD	10 x AD
SAK 18	18	4 x 1.5 mm ²	3	AD 16 mm	5 x AD	10 x AD
SAK 26	26	4 x 2.5 mm ²	2	AD 16 mm	5 x AD	10 x AD
SAK 34	34	4 x 4 mm ²	2	AD 17 mm	5 x AD	12 x AD
SAK 44	44	4 x 6 mm ²	2	AD 23.8 mm	5 x AD	12 x AD
SAK 44 C	44	4 x 6 mm ²	6	AD 23.8 mm	5 x AD	12 x AD
SAK 61	61	4 x 10 mm ²	2	AD 23.8 mm	5 x AD	12 x AD
SAK 90	90	4 x 16 mm ²	2	AD 32 mm	5 x AD	12 x AD
SAK 108	108	4 x 25 mm ²	2	AD 32 mm	5 x AD	12 x AD
SAK 135	135	4 x 35 mm ²	2	AD 32 mm	5 x AD	12 x AD

Cable type STK abrasion resistant, oil and gasoline resistant

STK		12 x 0,22 mm ²	PUR	5 x AD	20 x AD
J. I.		12 % 0,22 111111	AD 6.2 mm	3 7 7 15	20 1/10

Spindle/converter connection

GMN high speed spindles are equipped with plug-in connectors - with flanged socket and plug - which differ according to nominal current (page 20).

Ready-made cables with B048, B049, GA, MAC, D500 and STK plugs are available on request.

www.gmn.de

Power conductors

Signal lines

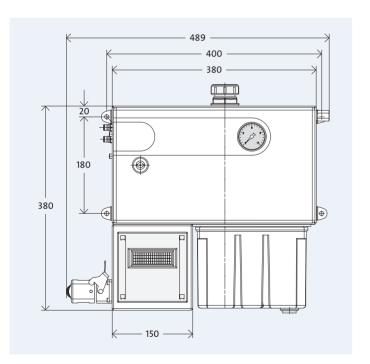
Plug with cable is available from the converter manufacturer. (Not

included in the GMN spindle's delivery complement.)

bergab@ya.ru тел. (495) 228-06-21, факс (495) 223-30-71 www.bergab.ru Берг АБ www.gmn.de

GMN Lubrication units

PRELUB

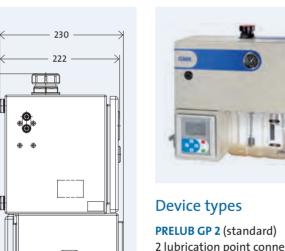

GMN

PRELUB, the electronically controlled lubrication unit, is optimally matched to oil-air lubricated GMN spindles and a guarantor for long service life (page 10).

The precisely regulated dosage of lubricant ensures effective bearing lubrication and maximum operational reliability during startup and shut-down phases.

With its 4 connections (maximum), this lubrication unit is capable of simultaneously providing individual supplies to a maximum of 2 spindles while requiring only a minimum amount of space.

Connection to a conventional PC computer supports clearly comprehensible operation with a multi-lingual menu structure.



PRELUB GP

425

- · Up to 4 internal or external (GP 0: e.g. 1 x 4-fold mixing distributors) lubrication point connections
- · Separate evaluation of fill-level
- · Electronic control with display
- · Very convenient to operate
- · Menu languages: DE, ENG, ES, FR, IT, JP, CN

150

2 lubrication point connections

PRELUB GP 4

4 lubrication point connections

PRELUB GP 0

for external mixing distributors (max. 4 lubrication point connec-

Features

- · Compressed air filter/regulator with manometer: Filter unit, 5 µm
- Enable signal for the machine controller following checks on:
- Oil level
- Oil pressure rise and drop
- Air pressure
- Pre-lub cycle
- · Timer:

for adapting the cycle time to oil viscosity and spindle data

- · Lubrication point connections: for PVC pipe 6 x 1
- · Line voltage:

90 ... 260 V AC, 50/60 Hz

· Air supply G1/4":

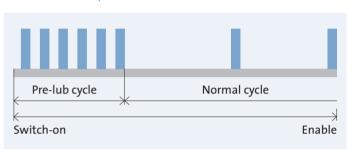
 $p_{min} = 5 \text{ bar}, p_{max} = 10 \text{ bar}$

- · Plug-in connection for power and signal transfers
- Dimensions:

about 484 x 432 x 222 mm (W x H x D); Protection class IP 55

· Color:

RAL 7032 textured (pebble gray); other colors on request


· Max. fuse protection:

Accessories

Accessory parts necessary for assembly, e.g. lubrication hoses, hydraulic and compressed air hoses, monitor manometer and filtered lubrication oil, are available from GMN.

Pre-lubrication

Automatic time lapse

- 1. Start pre-lubrication (enable signal to operate the spindle not issued)
- 2. Multiple lubrication pulses within short time, depending on the length of line between spindle and mixing distributor (pre-lub cycle)
- 3. Enable signal following expiration of the pre-lub time
- 4. Transition to normal cycle (cycle time) according to GMN operating instructions

The length of the pre-lub period depends on the length of connected lubrication lines.

(For details: see operating instructions)

Maintenance

Filtration of the oil and air supplies are necessary to ensure the unit provides a long-term, consistent lubricating function. The cartridges intended for a routine maintenance filter change

are available from GMN.

Lubricant selection

The use of filtered oils with friction and wear reducing additives ensures long-term reliable operation of the spindle at maximum speeds.

Detailed specifications for the necessary lubricants as well as rules for cycle times and lubrication pressures are provided in the operating instructions included in the delivery complement.

Coolant supply

GMN

Reducing the heat caused by operation and obtaining maximum spindle performance depend on a reliable supply of coolant in the necessary quantity and at the proper temperature (page 11).

GMN cooling units ensure the precise coolant temperature and volume regulation necessary to obtain constant low operating temperatures.

Highly precise regulation accuracy reduces axial shaft elongations caused by temperature fluctuations of the coolant.

· Coolant: R407c (FCKW free)

· Coolant temperature: 20 °C – 25 °C

- · Regulation accuracy:
- Model T: ± 2 °K
- Model F: ±1°K
- MOUCH 1 . 1

· High-precision regulation accuracy (on request): (for minimal axial spindle shaft elongation)

- Model T: ± 1.2 °K
- Model F: ± 0.5 °K
- · Permissible ambient temperature:
- + 42 °C
- · Connections for multiple spindles (on request) (parallel or series connection)
- · Coolant sensor:

Level and flow volume monitoring with fault alert contact

- · Color:
- Model F: RAL 5019 (capri blue)
- Model T: RAL 9005 (deep black)
- Other RAL colors (on request)

Cooling unit model	Cooling perform. ²⁾ [kW]	for spindle S6-60%	power [kW] S1	Tank capacity [l]	Supply voltage ³⁾	Dimensions L x W x H [mm]
K 0.9-T/3	0.9	6	4.5	6.4	1 x 230 V, 50 Hz	560 x 475 x 355
K 1.4-T/3	1.4	9	7	20	1 x 230 V, 50 Hz	710 x 545 x 450
K 2.5-T/3	2.5	16.5	12.5	20	1 x 230 V, 50 Hz	710 x 545 x 450
K 3.9-T/3	3.9	26	19.5	26	1 x 230 V, 50 Hz	760 x 610 x 500
K 5.3-T/3	5.3	35	26.5	26	1 x 230 V, 50 Hz	760 x 610 x 500
K 4.1-F ¹⁾	4.1	27	20.5	120	3 x 400 V, 50 Hz	715 x 715 x 1545
K 6.7-F ¹⁾	6.7	44.5	33.5	120	3 x 400 V, 50 Hz	715 x 715 x 1545
K 7.9-F ¹⁾	7.9	52.5	39.5	120	3 x 400 V, 50 Hz	715 x 715 x 1545
K 11.8-F ¹⁾	11.8	98.5 4)	59	120	3 x 400 V, 50 Hz	715 x 715 x 1545

¹⁾ In addition to high pressure monitoring, also low pressure monitoring of the coolant circuit.

GMN High speed spindles for manual tool change Service

www.gmn.de

²⁾ At 37 °C ambient temperature and 20 °C water temperature. Performance drops at higher ambient temperatures.

³⁾ Other voltages and frequencies possible on request.

⁴⁾ Assumption: Spindle power ≥ 80 kW leads to reduced cooling efficiency from 12% respectively 10% in relation to the spindle power.

www.bergab.ru Берг АБ bergab@ya.ru тел. (495) 228-06-21, факс (495) 223-30-71

GMN Spindle service

GMN

On the basis of long experience in the practical application of machine components, GMN provides comprehensive consultation and competent services in the field of spindle technology in order to support successful design and long-term economic operation of machine systems.

GMN's service network, available around the world and through authorized GMN affiliates, assures quick, professional, on-site services.

Consultation

GMN is able to support its customers with technically-oriented knowhow and comprehensive expertise during the planning phase of machine systems as well as in the necessary selection of spindles.

- · Analysis of performance requirements
- Spindle selection, service life calculation, characteristic values, installation dimensions ...
- · Interfaces, tool selection, grinding mandrels
- · Recoding of competitive products
- · Special solutions
- · Cooling units, lubrication units

Assembly

Upon customer request, GMN will provide GMN professionals to support the commissioning of spindles and spindle systems – in foreign countries this support can be provided by authorized affiliates.

- · Inspection of setup data on lubrication and cooling systems
- · Availability of necessary accessory products
- $\cdot \ \, \text{Conducting tests for spindle operation (test protocol)}$

Spindle analysis

In the event of degraded spindle functionality or the occurrence of reduced processing quality, GMN offers comprehensive testing techniques which allow the causes of problems to be determined.

- · Spindle bearing noise testing (bearing frequencies)
- \cdot Microscopic and measured bearing inspection
- · Lubricant investigation
- · Calculation review (e.g. check of preload)
- · Weak-point analysis

Repair

The sophisticated spindle analysis results and the availability of special technical facilities enable reliable repair solutions to be identified.

- Investigation of causes for spindle damage or inadequate processing results
- · Repair
- · Prevention of identical or similar damage
- · Spindle optimization with respect to processing requirements

Training courses

GMN provides qualified training courses in theory and practice for high frequency spindles and their applications, both at customer locations and also on our premises.

www.gmn.de

Subjects and contents of training courses are focused on individual customer requirements.

- · Essentials: products, designs, materials, accuracies and tolerances
- · Engineering: nomenclature, spindle selection, spindle installation, preload, matching, lubrication, calculation
- · Maintenance: workplace layout, tools, control measurements, lubrication, installation, grease distribution run

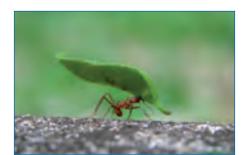
Our Internet website www.gmn.de contains comprehensive product information for downloading.

GMN

GMN Paul Müller Industrie GmbH & Co. KG manufactures high precision ball bearings, machine spindles, freewheel clutches and seals for a broad spectrum of applications at its Nuremberg, Germany plant.

Based on many years of experience in the development and production of machine components, GMN specializes in the production of high quality products in the field of spindle technology and is therefore not only able to offer an extensive standard program but also customer-oriented special solutions.

A world-wide GMN service network offers competent customer advice as well as individual solutions.



GMN quality management – audited and awarded.

GMN guarantees the highest quality products and services based on long-term reliability. Modern development and production processes ensure products are always at the leading edge of state-of-the-art engineering.

The transparent structure of all GMN company divisions and the clarity of organization flows ensure customer-oriented services and economic security.

All GMN company divisions are certified to DIN ISO 9001:2008.

GMN - safeguarding the future.

At GMN, progress means the best possible customer support and the performance optimization of technical products.

This aspiration is turned into reality at GMN, particularly by conforming to national and international environmental standards for efficient and responsible use of ecological resources.

GMN

High Precision Ball Bearings Spindle Technology Sprag Type Freewheel Clutches Non Contact Seals