www.bergab.ru Берг АБ bergab@ya.ru Тел. (495)-228-06-21, факс (495) 223-3071 PRECISE AND COMPACT.

SERVOMAX® ELASTOMER COUPLINGS

SERIES EK | 2 – 2,000 Nm

THE ULTIMATE COUPLING FROM 2 - 2,000 Nm

MODELS

PROPERTIES

with clamping hub, compact version

- short compact design
- Iow inertia
- easy assembly

APPLICATION EXAMPLES

see page 5

EK2

with clamping hub

- very smooth running
- counterbalanced type
- easy assembly

with split clamping hubs

- easy assembly
- split clamping hubs

radial mounting, due to

see page 7

EK1

EKH

with conical clamping ring

- very smooth running
- high clamping forces
- axially mountable

with keyway-connection favorably priced design easy to modify

see page 8

see page 9

MODELS

PROPERTIES

line shaft with split clamping hub

- radial mounting due to split hubs
- no intermediate support bearing necessary
- conical clamping hubs available
 langth up to 4 m

torque limiter with clamping hubreliable torque overload protection

backlash free due to patented

length up to 4 m

R+W design easy to mount

APPLICATION EXAMPLES

see page 10/11

EK4

EK7

for conical shaft ends

- for conical shaft ends e.g. Fanuc motors
- easy mounting
- conical hub mounts axially

- with expanding shaft
- axial hub mounting with expanding shaft
- very smooth running
- high clamping forces

Spindl

see page 12/13/14

see page 15

see page 16/17

for the use in explosive environments

available for the full product range

 for the hazardous areas 1/21 and 2/22 the SERVOMAX EEx Elastomer couplings are registered according to the directive ATEX 95/137

see page 19

Properties of the product range:

electrically insulating (standard)

compensation of lateral-, angular-

vibration dampening

and axial misalignment

backlash-free

press-fit design

SERVOMAX[®] ELASTOMER COUPLINGS

Areas of application:

- Servo drives
- Machine tools
- Packaging machinery
- Plant automation
- Printing machinery
- Industrial robots
- Measurement and positioning units
- general mechanical engineering
- Linking screw jacks, linear actuaters, encoders

Function

The equalizing element of an EK coupling is the elastomer insert. It transmits the torque without backlash and vibration. The elastomer insert defines the features of the entire coupling and/or of the entire drive system.

insert between the two coupling halves. The Servomax-Coupling com-

Type A Shore hardness 98 Sh A

Specification of the Elastomer inserts

Туре В Shore hardness 64 Sh D

The coupling is backlash free due to pretensioning of the elastomer pensates for lateral, angular and axial misalignment.

Shore hardness 80 Sh A

lateral misalignment

angular misalignment

axial misalignment

Type D* Shore hardness 92 Sh A

Туре	Shore hardness	Color	Material	Relative damping (ψ)	Temperature range	Features
А	98 Sh A	red	TPU	0,4 - 0,5	-30°C to +100°C	high damping
В	64 Sh D	green	TPU	0,3 - 0,45	-30°C to +120°C	high torsional stiffness
С	80 Sh A	yellow	TPU	0,3 - 0,4	-30°C to +100°C	very high damping
D*	92 Sh A	black	TPU	0,3 - 0,45	-10°C to +70°C	electrically conductive*

* Due to the electrically conductiv properties of the insert electrostatic load of the coupling is prevented. This eliminates sparks during normal operation (Explosive areas). Technical datas available.

The values of the relative damping were determined at 10 Hz and +20°C.

Madal row FK																Seri	es											
IVIODEI FOW EK			2			5			10			20			60			150			300			450			800	
Type (Elastomer insert)		А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С
Static torsional stiffness (Nm/rad)	CT	50	115	17	150	350	53	260	600	90	1140	2500	520	3290	9750	1400	4970	10600	1130	12400	18000	1280	15100	27000	4120	41300	66080	10320
Dynamic torsional stiffness (Nm/rad)	C _{Tdyn}	100	230	35	300	700	106	541	1650	224	2540	4440	876	7940	11900	1350	13400	29300	3590	23700	40400	6090	55400	81200	11600	82600	180150	28600
Lateral 🗄 🗐 🕴 (mm)		0,08	0,06	0,1	0,08	0,06	0,1	0,1	0,08	0,12	0,1	0,08	0,15	0,12	0,1	0,15	0,15	0,12	0,2	0,18	0,14	0,25	0,2	0,18	0,25	0,25	0,2	0,3
Angular 🖪 🔂 (degree)	Max.	1	0,8	1,2	1	0,8	1,2	1	0,8	1,2	1	0,8	1,2	1	0,8	1,2	1	0,8	1,2	1	0,8	1,2	1	0,8	1,2	1	0,8	1,2
Axial (mm)	Values		±1			±1			±1			±2			±2			±2			±2			±2			±2	
LateralImage: Constraint of the second s	Max. values	0,08 1	0,06 0,8 ±1	0,1 1,2	0,08 1	0,06 0,8 ±1	0,1 1,2	0,1 1	0,08 0,8 ±1	0,12 1,2	0,1	0,08 0,8 ±2	0,15 1,2	0,12	0,1 0,8 ±2	0,15 1,2	0,15 1	0,12 0,8 ±2	0,2 1,2	0,18 1	0,14 0,8 ±2	0,25 1,2	0,2	0,18 0,8 ±2	0,25 1,2	0,25 1	0,2 0,8 ±2	0,3

Static torsional stiffness at 50% T_{KN}

Dynamic torsional stiffness at T_{KN}

1 Nm = 8,85 in lbs

MODEL EKL

TECHNICAL SPECIFICATIONS

Model EKI														5	Serie	S												
IVIOUEI ENL			2			5			10			20			60			150			300			450			800	
Type (Elastomer insert)		А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С
Rated torque (Nm	T _{KN}	2	2,4	0,5	9	12	2	12,5	16	4	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Max. torque** (Nm	T _{Kmax}	4	4,8	1	18	24	4	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Overall length (mm	А		20			26			32			50			58			62			86			94			123	
Outer diameter (mm	В		16			25			32			42			56			66,5			82			102			136,5	
Outer diameter with screwhead (mm	B _S		17			25			32			44,5			57			68			85			105			139	
Mounting length (mm	С		6			8			10,3			17			20			21			31			34			46	
Inner diameter range H7 (mm	D _{1/2}		3 - 8		4	l - 12,7			4 - 16			8 - 25			12 - 32		1	9 - 36)		20 - 45		2	28 - 60	1		35 - 80)
Inner diameter max. (elastomer) (mm	D _E		6,2			10,2			14,2			19,2			27,2			30,2			38,2			46,2			60,5	
Mounting Screw (ISO 4762/12.9)			M2			M3			M4			M5			M6			M8			M10			M12	l		M16	
Tightening torque of the mounting screw (Nm	E		0,6			2			4			8			15			35			70			120			290	
Distance between centers (mm	F		5,5			8			10,5			15,5			21			24			29			38			50,5	
Distance (mm	G		3			4			5			8,5			10			11			15			17,5			23	
Hub length (mm	Н		12			16,7			20,7			31			36			39			52			57			74	
Moment of inertia (10 ⁻³ kgm ²	J_1/J_2		0,0003			0,001			0,01			0,01			0,08			0,15			0,4			1,3			7,8	
Approx. weight (kg		0,008 0,02							0,05			0,12			0,3	_		0,5			0,9	_		1,5			8,5	
Speed* (rpm			28.000			22.000			20.000)		19.000)		14.000			1.500)		9.500	_		8.000			4.000	1
Information about static and dynam			1 Nm	= 8,8	5 in Ib	S			** M	laxim	um trar	nsferal	ole tor	rque of	the cla	ampir	ig hub	depen	ds on	the bo	re diar	meters						

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 4 $\,$

Series	Ø 3	Ø 4	Ø 5	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
2	0,2	0,8	1,5	2,5														
5		1,5	2	8														
10			4	12	32													
20				20	35	45	60											
60					50	80	100	110	120									
150						120	160	180	200	220								
300						200	230	300	350	380	420							
450								420	480	510	600	660	750	850				
800										700	750	800	835	865	900	925	950	1.000

Higher torque through additional key possible.

** Maximum transferable torque of the clamping hub depends on the bore diameters (bore/shaft clearance 0,01 mm to 0,05 mm shaft oiled)

Ordering example

	EKL /	60 /	Α /	19 /	24 / XX
Model					
Series					
Type Elastomer inser	t				
Bore Ø D1 H7					
Bore Ø D2 H7					
Non standard e.g. fir	nely bala	anced			
	-				

All data is subject to change without notice.

TECHNICAL SPECIFICATIONS

Madal EV 2											Sei	ries								
IVIOUEI EK Z				20			60			150			300			450			800	
Type (Elastomer insert)			А	В	С	А	В	С	А	В	С	А	В	С	Α	В	С	А	В	С
Rated torque	(Nm)	T _{KN}	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Max. torque**	(Nm)	T _{Kmax}	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Overall length	(mm)	А		66			78			90			114			126			162	
Outer diameter	(mm)	В		42			56			66,5			82			102			136,5	
Outer diameter with screwhead	(mm)	B _S		44,5			57			68			85			105			139	
Mounting length	(mm)	С		25			30			35			45			50			65	
Inner diameter range H7	(mm)	D _{1/2}		8 - 25			12 - 32			19 - 36			20 - 45			28 - 60			35 - 80	
Inner diameter max. (elastomer)	(mm)	D _E		19,2			27,2			30,2			38,2			46,2			60,5	
Mounting screw (ISO 4762/12.9)				M5			M6			M8			M10			M12			M16	
Tightening torque of the mounting screw	(Nm)			8			15			35			70			120			290	
Distance between centers	(mm)			15,5			21			24			29			38			50,5	
Distance	(mm)	G		8,5			10			12			15			17,5			23	
Hub length	(mm)	Н		39			46			52,5			66			73			93,5	
Moment of inertia (10 ⁻³ k	kgm²)	J_1/J_2		0,02			0,09			0,2			0,6			1,5			9,5	
Approx. weight	(kg)			0,15			0,35			0,6			1,1			1,7			10	
Speed*	(rpm)			19.000			14.000			11.500			9.500			8.000			4.000	

www.bergab.ru Берг АБ bergab@ya.ru Тел. (495)-228-06-21, факс (495) 223-3071m

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 4

** Maximum transferable torque of the clamping hub depends on the bore diameters

Series	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
20	20	35	45	60											
60		50	80	100	110	120									
150			120	160	180	200	220								
300			200	230	300	350	380	420							
450					420	480	510	600	660	750	850				
800							700	750	800	835	865	900	925	950	1.000

Higher torque through additional key possible.

1 Nm = 8,85 in lbs

All data is subject to change without notice.

MODEL EKH

TECHNICAL SPECIFICATIONS

						-					Ser	ries						-		
				20			60			150			300			450			800	
Type (Elastomer insert)			А	В	С	А	В	С	Α	В	С	Α	В	С	А	В	С	А	В	С
Rated torque	(Nm)	T _{kn}	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Max. torque**	(Nm)	T _{Kmax}	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Overall length	(mm)	А		66			78			90			114			126			162	
Insertion length	(mm)	A _E		28			33			37			49			51			65	
Outer diameter	(mm)	В		42			56			66,5			82			102			136,5	
Outer diameter with screwhead	d (mm)	Bs		44,5			57			68			85			105			139	
Mounting length	(mm)	С		25			30			35			45			50			65	
Inner diameter range H7	(mm)	D _{1/2}		8 - 25			12 - 32			19 - 36			20 - 45			28 - 60			35 - 80	
Inner diameter max. (elastomer)	(mm)	D _E		19,2			27,2			30,2			38,2			46,2			60,5	
Mounting screw (ISO 4762/12.	.9)			M5			M6			M8			M10			M12			M16	
Tightening torque of the mounting screw	(Nm)	E		8			15			35			70			120			290	
Distance between centers	(mm)	F		15,5			21			24			29			38			50,5	
Distance	(mm)	G		8,5			10			12			15			17,5			23	
Hub length	(mm)	Н		39			46			52,5			66			73			93,5	
Moment of inertia	(10 ⁻³ kgm ²)	J_1/J_2		0,02			0,09			0,2			0,6			1,5			9,5	
Approx. weight	(kg)			0,15			0,35			0,6			1,1			1,7			10	
Speed*	(rpm)			19.000			14.000			11.500			9.500			8.000			4.000	

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 4 $\,$

** Maximum transferable torque of the clamping hub depends on the bore diameters

Serie	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
20	30	40	50	65											
60		65	120	150	180	200									
150			180	240	270	300	330								
300			300	340	450	520	570	630							
450					630	720	770	900	1.120	1.180	1.350				
800							1.050	1.125	1.200	1.300	1.400	1.450	1.500	1.550	1.600

Higher torque through additional key possible.

1 Nm = 8,85 in lbs

All data is subject to change without notice.

MODEL EK6

TECHNICAL SPECIFICATIONS

Model EV 4													Series	5									
IVIOUEIERO				10			20			60			150			300			450			800	
Type (Elastomer insert)			А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С
Rated torque	(Nm)	T _{KN}	12,6	16	4	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Max. torque	(Nm)	T _{Kmax}	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Overall length	(mm)	А		42			56			64			76			96			110			138	
Outer diameter	(mm)	В		32			43			56			66			82			102			136,5	
Mounting length	(mm)	С		15			20			23			28			36			42			53	
Inner diameter range H7	(mm)	D _{1/2}		6 - 16			8 - 24			12 - 32			19 - 35			20 - 45			28 - 54			32 - 80	1
Inner diameter max. (elastomer)	(mm)	D _E		14,2			19,2			27,2			30,2			38,2			46,2			60,5	
Mounting screw (ISO 4762/12.9	9)			3x M3			6x M4			4x M5			8x M5			8x M6			8x M8			8x M10)
Tightening torque of the mounting screw	(Nm)			2			3			6			7			12			35			55	
Width Elastomer insert	(mm)			9,5			12			14			15			18			20			25	
Moment of inertia ((10 ⁻³ kgm ²)	J_1/J_2		0,01			0,015			0,08			0,15			0,4			1,3			9,2	
Approx. weight	(kg)			0,08			0,12			0,3			0,5			0,9			1,5			9,6	
Speed	(rpm)			20.000			19.000			14.000			11.500			9.500			8.000			4.000	

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 4

1 Nm = 8,85 in lbs

Access holes in the mounting flange are not necessary for EK 6 couplings. The unique assembly screw design (shown below) allows for easy axial mounting and dismounting of the coupling.

Intermediate flange

ordering example	5		
ł	EK6/60/	A / 19)/24/XX
Model			
Series			
Type Elastomer insert			
Bore Ø D1 H7			
Bore Ø D2 H7			
Non standard e.g. and	odized		

All data is subject to change without notice.

MODEL EK1

TECHNICAL SPECIFICATIONS

Madal EV 1															S	Serie	s												
				2			5			10			20			60			150			300			450			800	
Type (Elastomer insert)			А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С
Rated torque	(Nm)	T _{KN}	2	2,4	0,5	9	12	2	12,5	16	4	17	21	6	60	75	20	160	200	42	325	405	84	450	660	95	950	1100	240
Max. torque	(Nm)	T _{Kmax}	4	4,8	1	18	24	4	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Overall length	(mm)	А		20			34			35			66			78			90			114			126			162	
Outer diameter	(mm)	В		15			25			32			42			56			66,5			82			102			136,5	j
Mounting length	(mm)	С		6,5			12			12			25			30			35			45			50			65	
Inner diameter pilot bored	(mm)	Dv		3			4			6			7			9			14			18			22			29	
Inner diameter range H7	(mm)	D _{1/2}		3 - 9			6 - 15			6 - 18			8 - 25		1	12 - 32	2	1	19 - 38	8		20 - 45	5	2	28 - 60	C		32 - 8	0
Inner diameter max. (elastomer)	(mm)	D _E		6,2			10,2			14,2			19,2			27,2			30,2			38,2			46,2			60,5	
Set screws (DIN 916)		E											Se	ee tab	le (dep	endin	g on b	ore Ø)	**										
Width Elastomer insert	(mm)	F		5			8			9,5			12			14			15			18			20			25	
Distance	(mm)	G		3			5			6			9			11			12			15			17			30	
Possible shortening length	(mm)	Н		4			6			6			19			22			26			32			37			43	
Moment of inertia	(10 ⁻³ kgm ²)	J_1/J_2		0,0003 0,001						0,01			0,02			0,09			0,2			0,6			1,5			11,4	
Approx. weight	(kg)			0,008 0,03						0,08			0,15			0,35			0,6			1,1			1,7			11	
Speed*	(rpm)			28.000)		22.000)		20.000)		19.000)		14.000)		11.500)		9.500			8.000			4.000)

It's critical that

modifications

of the hub are

machined concen-

trically and per-

pendicular to the

through bore.

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 4

EK1 hubs can be modified to customer specifications.

The coupling hub may be shortened by measurement H.

All data is subject to change without notice.

1 Nm = 8,85 in Ibs

MODEL EZ2

TECHNICAL SPECIFICATIONS

R+W calculation program

With a specially developed sofware R+W can calculate the critical resonant speeds for each application.

Results of a calculation are shown below.

The critical speed can be altered by changing the tube material and/or other parameters.

Critical resonant speed	n _k	=	1/min.
Torsional stiffness tube	C_{T}^{ZWR}	=	Nm/rad
Total stiffness EZ 2	C_{Tdyn}^{EZ}	=	Nm/rad
Angle of twist	φ	=	Degree-Min-Sec
Weight of total axes	m	=	kg
Critical resonance speed	n _e	=	1/min
Mass moment of inertia	J	=	kgm²
Permissible lateral misalignment	Δ Kr	=	mm

All data is subject to change without notice.

Assembly instructions

Non standard e.g. finely balanced

The total length of the axis is defined by the distance P + 2x0.

Madal E7 2		Series																			
IVIOUEI EZ Z		1	0	2	0	6	0	15	50	30)0	45	50	80	10						
Type (Elastomer insert)		А	В	А	В	А	В	A	В	А	В	А	В	А	В						
Rated torque (Nm)	T _{KN}	12,5	16	17	21	60	75	160	200	325	405	530	660	950	1100						
Max. torque** (Nm)	T _{Kmax}	25 32		34	42	120	150	320	400	650	810	1060	1350	1900	2150						
Overall length (mm)	А	95 - 4	1.000	130 - 4.000		175 -	4.000	200 -	4.000	245 -	4.000	280 -	4.000	320 -	4.000						
Outer diameter hub (mm)	B ₁	3	2	4	2	5	6	66,5		82		1()2	130	5,5						
Outer diameter tube (mm)	B ₂	2	8	3	5	5	0	6	0	7	6	9	0	12	0						
Outer diameter with screwhead (mm)	Bs	3	2	44	,5	5	7	6	8	8	5	10)5	13	9						
Fit length (mm)	С	2	0	2	5	4	0	47		55		65		7	9						
Inner diameter range H7 (mm)	D _{1/2}	5 -	16	8 -	25	14 - 32		19 - 36		19 - 45		24 - 60		35 - 80							
Mounting screw (ISO 4762/12.9)		N	14	M5		M	16	M8		M	10	M12		M	16						
Tightening torque of the mounting screw (Nm)	E	2	ļ	8		1	5	3	5	7	0	12	20	29	0						
Distance between centers (mm)	F	10	,5	15	i,5	21		24		29		38		50	,5						
Distance (mm)	G	7.	5	8	,5	15		17,5		20		20		20		2	5	3)		
Mounting length (mm)	0	16	,6	18	8,6	3	2	3	7	4	2	5	2	62							
Moment of inertia (10 ⁻³ kgm ²)	J_1/J_2	0,0	01	0,	02	0,7	15	0,	21	1,0	02	2	,3	1	7						
Inertia of tube per meter (10 ⁻³ kgm ²)	J_3	0,0	75	0,1	83	0,6	56	1,	18	2,4	48	10),6	3	3						
Dynamic torsional stiffness of the couplings (Nm/rad)	C _{Tdyn} E	270	825	1.270	2.220	3.970	5.950	6.700	14.650	11.850	20.200	27.700 40.600		41.300	90.000						
Torsional stiffness of tube per meter (Nm/rad)	C _T ^{ZWR}	32	21	1.5	i30	6.6	32	11.810		11.810		20.230		11.810 20.230		11.810 20.230		65.	340	392.	800
Distance between centers (mm)	N	2	6	3	3	4	9	5	7	67		78		9	4						
Length of the couplings (mm)	Н	3	4	46		63		73		86		99		125							

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 4

1 Nm = 8,85 in lbs

** Max. transferable torque of the clamping hub see EKH (page 7)

MODEL ES2

TECHNICAL SPECIFICATIONS

W = single position re-engagement

- After the overload has been eliminated, the coupling will automatically reengage precisely 360° from the original disengagement position
- Achivement of the precise synchronus re-engagement due to patented R+W design
- Signal at overload with mechanical switch or proximity sensor

D = Multi position re-engagement

- Coupling re-engages at multiple set angular intervals.
- Immediate availability of the application as soon as the overload has been eliminated.
- Signal at overload with mechanical switch or proximity sensor
- Standard engagement every 60°
- Engagement at 30, 45, 90 and 120 degrees are optional.

F = Full disengagement

- Permanent separation of drive and driven loads in the event of a torque overload.
- No residual friction
- Signal at overload
- Rotating elements slow down freely
- Coupling can be re-engaged manually (Engagement every 60°)

All data is subject to change without notice.

The selection of torque limiters

In general the torque limiters are sized according to the necessary disengagement torque. This torque must exceed the nominal torque of the application.

For more information see page 18.

Model ES 2		Series																		
IVIOUEI ES Z		10		20		50	1	50	3	00	4	50	80	00						
Adjustment range (Nm)	т	2 - 6		0 - 25	10	- 30 or	2)-70	100	- 200	80 -	200	400	- 650						
possible from -to (approx. values)	I KN	4 - 12	2	0 - 40	25	- 80	80	-180	200	- 320	300	- 500	600	- 900						
Adjustment range (full disenga- (Nm)	ΤF	2-5 or		3 - 20 or	20	- 40 or	2)-60)-80	120	- 180 or	60 - 100	150	200	- 400 or						
gement) possible from -to (approx. values)	' KN	5-10		6 - 30	30	- 60	80	-150	160	- 300	250	- 500	450	- 800						
Overall length (mm)	А	60		86		96		06	1	40	10	54	1	79						
Overall length (full disengagement) (mm)	A _F	60		86		96		08	1	43	168		10	90						
Outer diameter of actuation ring (mm)	В	45		65		73	92		1	20	1:	35	1!	52						
Outer diameter of actuation ring (mm)	B _F	51,5		70		83		98		32	1!	55	1	77						
Fit length (mm)	C ₁	10,3		17		20		21	:	31	3	4	4	6						
Fit length (mm)	C ₂	16		27		31		35		42	5	1	4	5						
Length of hub (mm)	C ₃	20,7		31		36		39	!	52	5	7	7	4						
Inner diameter from Ø to Ø H7 (mm)	D ₁	5 - 16		8 - 25	12	- 32	19	- 36	20	- 45	28	- 60	35	- 80						
Inner diameter from Ø to Ø H7 (mm)	D ₂	6 - 20		2 - 30	15	- 32	19	- 42	30	- 60	35	- 60	40	- 75						
Diameter of the hub (mm)	E ₁	32		42		56	6	6,5	1	32	1(02	13	6,5						
Diameter of the hub (mm)	E ₂	40		55		66		81		10	123		132							
Distance (mm)	F	17		24		24		24		30		31	:	35	4	5	5	iO		
Distance full disengagement (mm)	F _F	16		22		29		30	:	35	4	.3	5	4						
Distance (mm)	G ₁	5		8,5		8,5		8,5		8,5		10		11		15	17	7,5	2	3
Distance (mm)	G ₂	5		7,5		9,5	11		13		17		1	8						
Distance between centers (mm)	H ₁	10,5		15		21		24	:	<u>2</u> 9	3	8	50),5						
Screws (ISO 4762/12.9)		M4		M5	1	V16		V18	N	110	М	12	М	16						
Tightening torque of the mounting screw (Nm)	I ₁	4		8		15		35	-	70	1:	20	29	90						
Distance between centers SK-side (mm)	H ₂	15		19		23		27	:	39	4	1	4	8						
Screws (ISO 4762/12.9)		M4		M6	1	V18	N	/10	N	112	М	16	2x 1	V16						
Tightening torque of the mounting screw (Nm)	I ₂	4,5		15		40		70	1	30	20	00	2!	50						
Diameter with screwhead (mm)	Ks	32		44,5		57		68	1	35	1()5	1:	39						
Approx. weight (kg)		0,3		0,6		1,0		2,4	Ę	,8	9	,3	14	1,3						
Moment of inertia (10 ⁻³ kgm ²)	J _{ges}	0,06		0,25	(),7		2,3		11	2	2	33	3,5						
Actuation path (mm)		1,2		1,5		1,7		1,9	2	2,2	2	,2	2	,2						
Type (Elastomer insert)		A B	А	В	А	В	А	В	А	В	А	В	А	В						
Inner diameter (Elastomer insert) (mm)	D _E	14,2	14,2 19,2 27,2				30,2 38,2				46,2		60,5							

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 4

1 Nm = 8,85 in Ibs

Mounting instructions

Mounting: Slide the coupling on the shaft ends to the proper axial position. Using a torque wrench, tighten the clamp screws to the correct tightening torque as indicated (in the table page 12)

CAUTION! Both clamping hubs have different screws and different tightening torques.

Dismounting: Simply loosen the clamp screw I1, I2 and remove the safety coupling.

Emergency cut off: The axial path of the actuation ring activates the mechanical switch or the proximity sensor .

CAUTION! Upon assembly, it is absolutely necessary to check the function of the switch 100%

FUNCTION SYSTEMS ES2

R+W torque limiting couplings are ball detent style overload couplings. They protect drive and driven mechanical components from damage associated with torque overloads.

- Backlash free torque transmission is accomplished by a series of steel balls (4) nested in hardened detents (5).
- Disc springs push against an actuation ring (3) keeping the balls nested.
- The disengagement torque is adjustable by means of an adjustment nut (1).
- In the event of an overload, the actuation ring (3) moves axially allowing the balls to come of the detents separating the drive and driven elements.
- The movement of the actuation ring (3) can be sensed by means of a mechanical switch or proximity sensor (6) triggering the drive to shut down.

Disengagement torque setting

At ES 2 couplings, the slot of the clamping hub serves as a marking (13).

R+W torque limiters are factory set to the customer specified disengagement torque, which is marked onto the coupling. The adjustment range (min/max) is also marked on the adjustment nut (1).

The customer can adjust the disengagement torque as long as it is in the range (12) indicated on the adjustment nut.

The adjustment range may not be exceeded while re-adjusting.

To adjust the disengagement torque, loosen the locking screws (11) and rotate the adjustment ring using a spanner wrench to the desired new setting. Tighten the 3 locking screws (11) and test the coupling.

CAUTION:

R+W torque limiters incorporate disc springs that exhibit a special spring characteristic. It is important to stay in the max-min range of the coupling.

Single-position / Multi-position

In a torque overload, with the single-position design (standard) and multi-position design, the spring disengages to allow the balls to come out of their detents, separating the drive and driven elements. Very low residual spring pressure remains so that

the coupling will re-engage once the torque is reduced below the overload setting.

Full-disengage

With this design, when a torque overload is detected, the disc spring completely flips over and places no residual spring pressure on the

actuation ring. The drive and driven elements are completely separated.

Re-engagement of the coupling is not automatic and must be performed manually (Picture 3a, 3b).

CAUTION: Re-engagment should only be performed when the coupling stands still the od pot rotating!

The R+W full-disengage torque limiting coupling can be re-engaged in six different positions or every 60 degrees with low "press-in" force (E). Marks on the actuation ring and body (13) of the coupling must line up and indicate the re-engagement points.

As of size 150 and up the re-engagement can be done with 2 lever which will be supported at a recess on the adjustment nut (picture 3b). Screwdrivers can be used as a lever.

MODEL EK4

TECHNICAL SPECIFICATIONS

ØB

Elastomer insert Type A / B / C Achtung: Die Masse C2 / H / und ØB2 sind vom verwendeten Konuszapfen abhängig.

Die Länge der Kupplung kann deshalb nur bis zur Konusstirnseite des verwendeten Konuszapfens vorab festgelegt werden.

Genaue Massangaben erhalten Sie nach der Festlegung der Konusgeometrie direkt von R+W.

Model EV /		Series											
IVIUUEI EN 4				20			60		150				
Type (Elastomer insert)			А	В	С	А	В	С	А	В	С		
Rated torque	(Nm)	T _{KN}	17	21	6	60	75	20	160	200	42		
Max. torque*	(Nm)	T _{Kmax}	34	42	12	120	150	35	320	400	85		
Overall length	А		42			50			57				
Outer diameter hub	B ₁		42			56			66,5				
Outer diameter conical hub	B ₂	١	/ariable	9	,	variable	9	variable					
Outer diameter with screwhead	B _s		44,5			57		68					
Mounting length	(mm)	C ₁		25			30		35				
Mounting length	(mm)	C ₂	١	/ariable	9	,	variable	9	variable				
Inner diameter range H7	(mm)	D ₁		8-25			12-32			19-36			
Possible conical diameter	(mm)	D ₂			Acc.	to cust	tomer r	equire	ment				
Inner diameter max (elastomer)	(mm)	D _E		19,2			27,2		30,2				
Mounting screw (ISO 4762/12.9)				M5			M6			M8			
Tightening torque of the mounting screw	(Nm)	E ₁		8			15			35			
Distance between centers			15,5			21			24				
Distance	(mm)	G	8,5				10		12				
Length	(mm)	Н	١	/ariable	9	,	variable	9	١	variable			
Information about static and d	lynamic	torsion	al stiff	ness a	as we	las			1 Nm	= 8.85	in Ibs		

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 4 $\,$

** Maximum transferable torque of the clamping hub depends on the bore diameters (bore/shaft clearance 0,01 mm to 0,05 mm shaft oiled)

Series	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35
20	20	35	45	60			
60		50	80	100	110	120	
150			120	160	180	200	220

Higher torque through additional key possible.

Properties: for conical shaft ends short compact design easy assembly high concentricity backlash-free electrically insulating Material: Clamping hubs: high strength aluminum Conical hub: steel Elastomer insert: precision molded, wear resistant, and thermally stable polymer Design: Two coupling hubs are concentrically machined with concave driving jaws One side with clamping hub and a radial screw ISO 4762 One side with a hub conically bored with keyway according to customer equirement Speed: Over 10.000 rpm a finely balanced version is available On the hub/shaft connection 0,01 to 0,05 mm Tolerance:

Ordering example
EK4 / 20 / A / 24 / 1:10 Ø11 / XX
Model Series Type Elastomer insert Bore Ø D1 H7 Cone/ Ø D2 Non standard e.g. finely balanced

All data is subject to change without notice.

Installation instruction

Mounting of the clamping hub: Slide the coupling on the shaft ends, at the right axial position thighten the mounting screw to the specified tightening torque as shown in the table (column E1).

Mounting of the conical hub: After inserting the key into the keyway of the motor shaft slide the coupling hub on the shaft. Check if the conical hub has a proper seat on the shaft. Now the nut (3) can be tightened on the motor shaft using the exact tightening torque specified by the motor manufacturer.

MODEL EK7

TECHNICAL SPECIFICATIONS

Model EV7		Series																											
			5			10			20			60			150			300			450			800					
Type (Elastomer insert)		А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С	А	В	С				
Rated torque (Nm)	T _{KN}	9	12	2	12,5	16	4	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240				
Max. torque* (Nm)	T _{Kmax}	18	24	4	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400				
Overall length (mm)	A		22			28			40			46		51			68			76		94							
Outer diameter (mm)	В		25			32			42			56			66,5			82		102			135						
Outer diameter with screwhead (mm)	Bs		25			32			44,5			57			68		85				105			139					
Mounting length (mm)	C ₁		8			10,3		17				20			21		31			34				46					
Mounting length (mm)	C ₂		12			20		25			27			32		45				55			60						
Inner diameter range H7 (mm)	D ₁		4 - 12	,7		5 - 16		8 - 25			12 - 32			19 - 36				20 - 45	,	28 - 60		35 - 80)					
Outer diameter range h7 (mm)	D_2		10 - 16			13 - 25		14 - 30		23 - 36		26 - 42			38 - 60			42 - 70		42 - 80)							
Inner diameter max. (elastomer) (mm)	D _E		10,2			14,2		19,2				27,2			30,2			38,2		46,2			60,5						
Mounting screw (ISO 4762/12.9)	F		M3			M4		M5		M6		M8			M10				M12		M								
Tightening torque (Nm)	E ₁		2			4			8		15		35		35 70		70		70		70			120				290	
Mounting screw (ISO 4762/12.9)	F		M4			M5			M6			M8			M10			M12			M16			M16					
Tightening torque (Nm)	∟2		4			9			12			32			60			110			240			300					
Distance between centers (mm)	F		8			10,5			15,5			21		24		29		29				38			50,5				
Distance (mm)	G		4			5			8,5			10		10		11				15			17,5			23			
Length (mm)	Н		7			7			10			11			16			20			27			27					
Moment of inertia (10 ⁻³ kgm ²)			0,002			0,01		0,04			0,08		0,15		0,15		0,15 0,4		0,4			1,3			9,5				
Approx. weight (kg)			0,04			0,05			0,12		0,3		0,5		0,9			1,5			7,6								
Speed** (rpm)			22.000			20.000		1	19.000		14.000		11.500			9.500 8				8.000			4.000						

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 4 1 Nm = 8,85 in Ibs

Maximum transferable torque of the clamping hub depends on the bore diameters (bore/shaft clearance 0,01 mm to 0,05 mm shaft oiled)

TECHNICAL INFORMATION EK7

Series	Ø 3	Ø 4	Ø 5	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
5		1,5	2	8														
10			4	12	32													
20				20	35	45	60											
60					50	80	100	110	120									
150						120	160	180	200	220								
300						200	230	300	350	380	420							
450								420	480	510	600	660	750	850				
800										700	750	800	835	865	900	925	950	1.000

Higher torque through additional keyway possible.

Mounting instructions

Mounting of the clamping hub:

Slide the coupling onto the shaft ends, at the right axial position tighten the mounting screw to the specified tightening torque E_1 .

See page 16/collumn E₁.

Mounting of the expanding shaft:

Push the shaft hub into the bore, at the right axial position thighten the mounting screw to the specified tightening torque E₂.

See page 16/collumn E₂

Ordering example

	EK7 / 20 /	Α/	24 / 1	9 / XX
Model Series				
Type Elastomer ins	sert			
Bore Ø D1 H7				
Shaft Ø D2 h7				
Non standard e.g.	finely balanced			

All data is subject to change without notice.

Dismounting of the clamping hub: For dismounting loosen the mounting screw E_{1.}

Dismounting of the expanding shaft:

For dismounting loosen the screw E_{2} a few turns.

By putting pressure on the screwhead, the inner cone slides out of its sleeve.

The shaft is now loose.

Advantage:

No access holes in the intermediate flange are neccessary in order to mount the coupling.

CAUTION:

The elastomer insert has to be able to axially move in order to compensate for axial misalignment.

FACTORS AND SIZING CALCULATIONS

Temperature factor \textbf{S}_{υ}	А	В	С
Temperature (v)	Sh 98 A	Sh 64 D	Sh 80 A
> -30° to -10°	1,5	1,7	1,4
> -10° to +30°	1,0	1,0	1,0
> +30° to +40°	1,2	1,1	1,3
> +40° to +60°	1,4	1,3	1,5
> +60° to +80°	1,7	1,5	1,8
> +80° to +100°	2,0	1,8	2,1
> +100° to +120°	-	2,4	-

Start factor S_Z

Z _h	up to 120	120 - 240	above 240
Sz	1,0	1,3	on request

Shock and load factor $\mathbf{S}_{\!\scriptscriptstyle A}$

Uniform load	S _A = 1,0
Non-uniform load	S_A = 1,8
High dynamics, frequent reversing loads	S_A = 2,5

\mathbf{T}_{KN} = Rated torque of the coupling (Nm)

- \mathbf{T}_{Kmax} = Max. torque of the coupling (Nm)
- \mathbf{T}_{S} = Existing peak torque of the coupling (Nm)
- \mathbf{T}_{AS} = Peak torque of the drive element (Nm)
- \mathbf{T}_{AN} = Rated torque of the drive element (Nm)
- T_{LN} = Rated torque of the driven element (Nm)
- \mathbf{P}_{LN} = Power of the driven element (KW)
- n = Speed (rpm)

 \mathbf{J}_{\parallel}

 \mathbf{J}_2

m

υ

 \mathbf{Z}_{h}

- J_A = Motor's moment of inertia (kgm²)
 - Machine's moment of inertia (kgm²) (Spindle + slide + workpiece)
- J_1 = Moment of inertia of a coupling half at the driving end (kgm²)
 - = Moment of inertia of a coupling half at the driven end (kgm²)
 - = Ratio of the moments of inerta driving to driven element
 - Temperature of the area around the coupling (observe radiant heat)
- **S**₁, = Temperature factor
- \mathbf{S}_{A} = Shock or load factor
- \mathbf{S}_{Z} = Start factor (factor for the number of starts/hour)
 - Cycle of starts (1/h)

Sizing of a Servomax[®] Elastomer Coupling

1. Calculation example without shock or reversing loads

The rated torque of the coupling (T_{KN}) needs to be higher than the rated torque of the driven element (T_{LN}) times the temperature factor S_v at the coupling for the application. If T_{LN} is not known, T_{AN} can be used for the calculation instead.

Condition:	$T_{KN} > T_{LN} \times S_{\upsilon}$		Auxiliary calculation:	T _{LN} =	9550 x P _{LN}	
Calculation ex Drive face: DC - T,	<pre>xample: (No loads and shocks) motor AN = 119 Nm</pre>	$\frac{\text{Coup}}{\upsilon} = \mathbf{S}_{\upsilon} =$	<u>ing conditons:</u> 70 ° C 1,7 (for 70°/Type A)		<u>Driven face: Pump</u> T _{LN} = 85 Nm	
Condition: T _i Ti Ti	_{KN} > T _{LN} x S ₀ _{KN} > 85 Nm x 1,7 _{KN} > 144,5 Nm	──→ <u>Resu</u>	It: A coupling type EK	2/150/A (T _{KN}	= 160 Nm) is selected.	

2. Calculation example with shock loads

In all cases the maximum rated torque (T_{Kmax}). of the coupling can not be exceeded. First calculate the rated torque (T_{KN}) of the coupling same as above. Compare this result to the peak torque (T_S) times the start factor (S_2) times the temperature factor (S_u) for the application. The greater of the two values must be less than (TKmax) of the coupling.

MODEL ATEX

used

FOR USE IN HAZARDOUS AREAS AND EXPLOSIVE A	AT mosphere EX plosible		
The ATEX 95 / ATEX 137 is regulated by the new European directive. Generally the explosive atmosphere is classified in 3 different zones.	Design of the Servomax EX:	No dimensional change of the EK standard series. The material of the hubs and the inserts will change. In general steel or stainless steel hubs with be used <i>Caution</i> : Aluminum hubs may not be used in explo- sive environment	
Zone 0: A place in which an explosive atmosphere is consisting out of a mixture of air and flammable substances in the form of gas, vapor or mist is present frequently, continuously or for longer periods	Hubs:		
Zone 20: Is relevant for an explosive atmosphere in the form of clouds of com- bustible dust in air under the same conditions as above.	Elastomer insert:	A special elastomer insert (Type D/92 Sh A), which is able to conduct electricity is used. This prevents the possibility of electrostatic loads and sparks.	
Zone 1: Described as a place in which an explosive atmosphere is existing of a mixture of air and flammable substances in the form of gas, vapor or mist is likely to occur in normal operation occasionally.	Mounting, Sizing:	All misalignment values and the transmittable torques are reduced by 30%.	
Zone 21: Is relevant for an explosive atmosphere in the form of clouds of combustible dust in air under the same conditions as above.	Maintanance:	A routine inspection of the coupling must be performed.	
Zone 2: A Place in which an explosive atmosphere is consisting out of mixture with air of flammable substances in the form of gas, vapor or mist is not likely to occur in	Mounting manuals:	Mounting and maintanance manuals are provided with every EEx coupling.	

normal operation but, if it does occur, it will persist for a short period only. Zone 22:

Relevant for an explosive atmosphere in the form of a cloud of combustible dust in air under the same conditions as above.

For the classified zones 1/21 and 2/22 the Servomax® Elastomer Coupling do have an accreditation according to ATEX 95/137

R+W solutions with standard components

All standards hubs and elastomer inserts are interchangable in the same sizes.

www.bergab.ru Берг АБ bergab@ya.ru Тел. (495)-228-06-21, факс (495) 223-3071 THE R+W-PRODUCT RANGE

Experience and Know-how for your special requirements.

TORQUE LIMITERS Series SK

From 0,1 – 2.800 Nm, Bore diameters 4 – 70 mm Available as a single position, multi-position, load holding, or full disengagement version Single piece or press-fit design

BELLOW COUPLINGS Series BK

From 15 – 10.000 Nm Bore diameters 10 – 180 mm Single piece or press-fit design

BELLOW COUPLINGS ECONOMY CLASS Series BKL / BKC

From 2 – 500 Nm Bore diameters 4 – 62 mm

LINE SHAFTS Series ZA/ZAE

From 10 – 4.000 Nm Bore diameters 10 – 100 mm Available up to 6 mtr. length

MINIATURE BELLOWS COUPLINGS Series MK

From 0,05 – 10 Nm Bore diameters 1 – 28 mm Single piece or press-fit design

SERVOMAX® ELASTOMER COUPLINGS Series EK

From 2 - 2.000 Nm, Shaft diameters 5 - 80 mm backlash-free, press-fit design

LINEAR COUPLINGS Series LK

From 70 – 2.000 N Thread M5 – M16

POLYAMID COUPLINGS MICROFLEX Series FK 1

R+W Antriebselemente GmbH Alexander-Wiegand-Straße 8 D-63911 Klingenberg/Germany

Tel. +49-(0)9372 - 9864-0 Fax +49-(0)9372 - 9864-20

info@rw-kupplungen.de www.rwcouplings.com

Rated torque 1 Ncm Bore diameters 1 – 1,5 mm

www.bergab.ru Берг АБ bergab@ya.ru Тел. (495)-228-06-21, факс (495) 223-3071

We are certified according to ISO 9001-200

ANAGEMENT

QUALITY

TGA-ZM-05-91-00 Registration No. 9605022

The information mentioned in this document is based on our present knowledge and experiences and does not exclude the manufacturer's own substantial testing of the equipment. So this is no obligatry assurance even with regard to protection rights of Third Parties. The sale of our products is subject to our General Conditions of Sale and Delivery.